IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v80y2016i3p1749-1782.html
   My bibliography  Save this article

Uncertainty in tsunami wave heights and arrival times caused by the rupture velocity in the strike direction of large earthquakes

Author

Listed:
  • Yo Fukutani
  • Suppasri Anawat
  • Fumihiko Imamura

Abstract

In tsunami risk assessments, understanding the uncertainties involved in numerical simulations of tsunami wave heights and arrival times is important. However, few studies have been conducted to determine the effects of dynamic parameters (i.e., rupture velocity and rise time) in the simulation of tsunami wave heights and arrival times, although numerous studies have been conducted on the uncertainties that result from static parameters (i.e., top depth, strike, dip, rake, and fault slip). In this study, we calculated the variability in tsunami wave heights and their arrival times as a result of the uncertainties in the along-strike rupture velocity of faults. Specifically, numerical simulations of tsunamis were conducted with various rupture velocities and starting points within a large fault. The numerical analyses considered hypothetical bathymetry and dynamic effects and indicated that the uncertainties in the maximum wave height and its arrival time are greater as the water depth increases. The number of sub-faults affected the wave heights and suggested that we should consider these effects in numerical simulations of tsunamis. The results of the numerical analyses using the actual bathymetry of the Tohoku region in Japan showed that the spatial uncertainty in the maximum wave height at a 50 m depth had a 0.04 log-normal standard deviation based on a distribution of ratios between the calculated wave heights from numerical simulations with and without considering dynamic effects. The results of this study are practical for probabilistic tsunami hazard assessments for which we must evaluate the quantitative value of the spatial uncertainty in wave heights. This study is a basis for similar research in terms of offering a technique for evaluating wave height uncertainty due to the rupture velocity. Copyright Springer Science+Business Media Dordrecht 2016

Suggested Citation

  • Yo Fukutani & Suppasri Anawat & Fumihiko Imamura, 2016. "Uncertainty in tsunami wave heights and arrival times caused by the rupture velocity in the strike direction of large earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1749-1782, February.
  • Handle: RePEc:spr:nathaz:v:80:y:2016:i:3:p:1749-1782
    DOI: 10.1007/s11069-015-2030-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-2030-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-2030-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Susan L. Bilek & Thorne Lay, 1999. "Rigidity variations with depth along interplate megathrust faults in subduction zones," Nature, Nature, vol. 400(6743), pages 443-446, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. T. Ismail-Zadeh & S. L. Cutter & K. Takeuchi & D. Paton, 2017. "Forging a paradigm shift in disaster science," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 969-988, March.
    2. Sheng Dong & Chun-Shuo Jiao & Shan-Shan Tao, 2017. "Joint return probability analysis of wind speed and rainfall intensity in typhoon-affected sea area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1193-1205, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yo Fukutani & Suppasri Anawat & Fumihiko Imamura, 2016. "Uncertainty in tsunami wave heights and arrival times caused by the rupture velocity in the strike direction of large earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1749-1782, February.
    2. G. Gopinath & F. Løvholt & G. Kaiser & C. Harbitz & K. Srinivasa Raju & M. Ramalingam & Bhoop Singh, 2014. "Impact of the 2004 Indian Ocean tsunami along the Tamil Nadu coastline: field survey review and numerical simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 743-769, June.
    3. Nikos Kalligeris & Luis Montoya & Aykut Ayca & Patrick Lynett, 2017. "An approach for estimating the largest probable tsunami from far-field subduction zone earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 233-253, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:80:y:2016:i:3:p:1749-1782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.