IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v86y2017i3d10.1007_s11069-016-2736-8.html
   My bibliography  Save this article

Joint return probability analysis of wind speed and rainfall intensity in typhoon-affected sea area

Author

Listed:
  • Sheng Dong

    (Ocean University of China)

  • Chun-Shuo Jiao

    (Ocean University of China)

  • Shan-Shan Tao

    (Ocean University of China)

Abstract

Strong wind and rainfall induced by extreme meteorological processes such as typhoons have a serious impact on the safety of bridges and offshore engineering structures. A new bivariate compound extreme value distribution is proposed to describe the probability dependency structure of annual extreme wind speed and concomitant process maximum rainfall intensity in typhoon-affected area. This probability model takes full account of the case that there may be no rainfall in a typhoon process. A case study based on the observation data of typhoon maximum wind speed and maximum rainfall intensity in Shanghai is conducted to testify the efficiency of the model. Weibull distributions with two parameters are applied to fit respective probability margins, and the joint probability distribution is constructed by Gumbel–Hougaard copula. The fitting results and K–S tests show that these models describe the original data well. The joint return periods are calculated by Poisson bivariate compound extreme value distribution we have proposed. They indicate that typhoons with no rain have smaller joint return periods, and wind speed is the main factor which impacts the change of the joint return periods.

Suggested Citation

  • Sheng Dong & Chun-Shuo Jiao & Shan-Shan Tao, 2017. "Joint return probability analysis of wind speed and rainfall intensity in typhoon-affected sea area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1193-1205, April.
  • Handle: RePEc:spr:nathaz:v:86:y:2017:i:3:d:10.1007_s11069-016-2736-8
    DOI: 10.1007/s11069-016-2736-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2736-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2736-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shanshan Tao & Sheng Dong & Nannan Wang & C. Guedes Soares, 2013. "Estimating storm surge intensity with Poisson bivariate maximum entropy distributions based on copulas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 791-807, September.
    2. Yo Fukutani & Suppasri Anawat & Fumihiko Imamura, 2016. "Uncertainty in tsunami wave heights and arrival times caused by the rupture velocity in the strike direction of large earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1749-1782, February.
    3. Yo Fukutani & Suppasri Anawat & Fumihiko Imamura, 2016. "Uncertainty in tsunami wave heights and arrival times caused by the rupture velocity in the strike direction of large earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1749-1782, February.
    4. Dong, Sheng & Tao, Shanshan & Li, Xue & Soares, C. Guedes, 2015. "Trivariate maximum entropy distribution of significant wave height, wind speed and relative direction," Renewable Energy, Elsevier, vol. 78(C), pages 538-549.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongshi Xu & Kui Xu & Lingling Bin & Jijian Lian & Chao Ma, 2018. "Joint Risk of Rainfall and Storm Surges during Typhoons in a Coastal City of Haidian Island, China," IJERPH, MDPI, vol. 15(7), pages 1-20, June.
    2. Yanting Ye & Weihua Fang, 2018. "Estimation of the compound hazard severity of tropical cyclones over coastal China during 1949–2011 with copula function," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 887-903, September.
    3. Ping Ai & Dingbo Yuan & Chuansheng Xiong, 2018. "Copula-Based Joint Probability Analysis of Compound Floods from Rainstorm and Typhoon Surge: A Case Study of Jiangsu Coastal Areas, China," Sustainability, MDPI, vol. 10(7), pages 1-18, June.
    4. Zheng, Xiao-Wei & Li, Hong-Nan & Gardoni, Paolo, 2023. "Hybrid Bayesian-Copula-based risk assessment for tall buildings subject to wind loads considering various uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    5. Verma, Amrit Shankar & Jiang, Zhiyu & Caboni, Marco & Verhoef, Hans & van der Mijle Meijer, Harald & Castro, Saullo G.P. & Teuwen, Julie J.E., 2021. "A probabilistic rainfall model to estimate the leading-edge lifetime of wind turbine blade coating system," Renewable Energy, Elsevier, vol. 178(C), pages 1435-1455.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. T. Ismail-Zadeh & S. L. Cutter & K. Takeuchi & D. Paton, 2017. "Forging a paradigm shift in disaster science," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 969-988, March.
    2. Seixas, M. & Melício, R. & Mendes, V.M.F. & Couto, C., 2016. "Blade pitch control malfunction simulation in a wind energy conversion system with MPC five-level converter," Renewable Energy, Elsevier, vol. 89(C), pages 339-350.
    3. Ping Ai & Dingbo Yuan & Chuansheng Xiong, 2018. "Copula-Based Joint Probability Analysis of Compound Floods from Rainstorm and Typhoon Surge: A Case Study of Jiangsu Coastal Areas, China," Sustainability, MDPI, vol. 10(7), pages 1-18, June.
    4. Ramezani, Mahyar & Choe, Do-Eun & Heydarpour, Khashayar & Koo, Bonjun, 2023. "Uncertainty models for the structural design of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    5. Díaz, H. & Silva, D. & Bernardo, C. & Guedes Soares, C., 2023. "Micro sitting of floating wind turbines in a wind farm using a multi-criteria framework," Renewable Energy, Elsevier, vol. 204(C), pages 449-474.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:86:y:2017:i:3:d:10.1007_s11069-016-2736-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.