IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v78y2015i2p879-893.html
   My bibliography  Save this article

Assessing the accuracy of multiple regressions, ANFIS, and ANN models in predicting dust storm occurrences in Sanandaj, Iran

Author

Listed:
  • Shahram Kaboodvandpour
  • Jamil Amanollahi
  • Samira Qhavami
  • Bakhtiyar Mohammadi

Abstract

Dust storms in the Sanandaj area in the western region of Iran, mainly during spring and summer, have become an environmental crisis. Prediction of dust storm occurrences helps the residents to their detrimental effects. However, no study has been conducted to determine the accuracy of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model in predicting dust storm occurrences. For that purpose, the prediction accuracy of ANFIS model was compared with that of two conventional models used for dust storm prediction: the Artificial Neural Networks (ANN), and Multiple Regression (MLR) models. Daily mean meteorological variables from Damascus (Syria) and PM 10 concentration, measured at a ground station in Sanandaj, Iran, from 2009 to 2012, were selected as independent and dependent variables, respectively. After data normalization between zero and one, the data from 2009 to 2011 were used for the simulation, while the data of 2012 were utilized for testing the models. The performance of the ANFIS model in simulating dust storm occurrences was higher compared with those of MLR and ANN. In the simulation results, among the three models, the highest Pearson correlation coefficient between the observed and the estimated dust storm occurrences was obtained for the ANFIS model. The prediction tests showed that the accuracy of the ANFIS model was higher compared with ANN and MLR. From the results of this study, it can be concluded that the ANFIS model has the potential to forecast dust storm occurrences in western Iran by using meteorological variables of the dust storm creation zone in the Syrian deserts. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Shahram Kaboodvandpour & Jamil Amanollahi & Samira Qhavami & Bakhtiyar Mohammadi, 2015. "Assessing the accuracy of multiple regressions, ANFIS, and ANN models in predicting dust storm occurrences in Sanandaj, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 879-893, September.
  • Handle: RePEc:spr:nathaz:v:78:y:2015:i:2:p:879-893
    DOI: 10.1007/s11069-015-1748-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1748-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1748-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Kamatchi & K. Balaji Rao & Nagesh Iyer & S. Arunachalam, 2012. "Neural network-based methodology for inter-arrival times of earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1291-1303, November.
    2. F. Falaschi & F. Giacomelli & P. Federici & A. Puccinelli & G. D’Amato Avanzi & A. Pochini & A. Ribolini, 2009. "Logistic regression versus artificial neural networks: landslide susceptibility evaluation in a sample area of the Serchio River valley, Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 551-569, September.
    3. M. Sharma & A. Tyagi, 2010. "Cyclic behavior of seismogenic sources in India and use of ANN for its prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(2), pages 389-404, November.
    4. Bagher Shirmohammadi & Hamidreza Moradi & Vahid Moosavi & Majid Semiromi & Ali Zeinali, 2013. "Forecasting of meteorological drought using Wavelet-ANFIS hybrid model for different time steps (case study: southeastern part of east Azerbaijan province, Iran)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 389-402, October.
    5. P. Lu & M. Rosenbaum, 2003. "Artificial Neural Networks and Grey Systems for the Prediction of Slope Stability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 383-398, November.
    6. Tung-Chiung Chang, 2007. "Risk degree of debris flow applying neural networks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(1), pages 209-224, July.
    7. Sfetsos, A., 2000. "A comparison of various forecasting techniques applied to mean hourly wind speed time series," Renewable Energy, Elsevier, vol. 21(1), pages 23-35.
    8. Vahid Nourani & Biswajeet Pradhan & Hamid Ghaffari & Seyed Sharifi, 2014. "Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 523-547, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Bai & Jianzhou Wang & Xuejiao Ma & Haiyan Lu, 2018. "Air Pollution Forecasts: An Overview," IJERPH, MDPI, vol. 15(4), pages 1-44, April.
    2. Jamil Amanollahi & Shahram Kaboodvandpour & Hiva Majidi, 2017. "Evaluating the accuracy of ANN and LR models to estimate the water quality in Zarivar International Wetland, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1511-1527, February.
    3. Yaroslav Vyklyuk & Milan Radovanović & Boško Milovanović & Taras Leko & Milan Milenković & Zoran Milošević & Ana Milanović Pešić & Dejana Jakovljević, 2017. "Hurricane genesis modelling based on the relationship between solar activity and hurricanes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1043-1062, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamil Amanollahi & Shahram Kaboodvandpour & Hiva Majidi, 2017. "Evaluating the accuracy of ANN and LR models to estimate the water quality in Zarivar International Wetland, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1511-1527, February.
    2. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    3. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    4. Shakti Suman & S. Z. Khan & S. K. Das & S. K. Chand, 2016. "Slope stability analysis using artificial intelligence techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 727-748, November.
    5. Yen-Ming Chiang & Wei-Guo Cheng & Fi-John Chang, 2012. "A hybrid artificial neural network-based agri-economic model for predicting typhoon-induced losses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 769-787, September.
    6. Arunava Ray & Vikash Kumar & Amit Kumar & Rajesh Rai & Manoj Khandelwal & T. N. Singh, 2020. "Stability prediction of Himalayan residual soil slope using artificial neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3523-3540, September.
    7. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    8. Liu, Hui & Tian, Hong-qi & Pan, Di-fu & Li, Yan-fei, 2013. "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks," Applied Energy, Elsevier, vol. 107(C), pages 191-208.
    9. Jie Dou & Hiromitsu Yamagishi & Hamid Pourghasemi & Ali Yunus & Xuan Song & Yueren Xu & Zhongfan Zhu, 2015. "An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1749-1776, September.
    10. Yan-Ning Wang & Han Chen & Bin-Song Jiang & Jing-Rui Peng & Jun Chen, 2022. "Cause Analysis and Preventive Measures of Guizhou D2809 Train Derailment Accident in Guizhou, China on 4 June 2022," IJERPH, MDPI, vol. 19(24), pages 1-14, December.
    11. Xiuzhen Li & Jiming Kong & Zhenyu Wang, 2012. "Landslide displacement prediction based on combining method with optimal weight," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 635-646, March.
    12. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    13. Jiang, Yu & Song, Zhe & Kusiak, Andrew, 2013. "Very short-term wind speed forecasting with Bayesian structural break model," Renewable Energy, Elsevier, vol. 50(C), pages 637-647.
    14. Gökhan Demir, 2018. "Landslide susceptibility mapping by using statistical analysis in the North Anatolian Fault Zone (NAFZ) on the northern part of Suşehri Town, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 133-154, May.
    15. Mohammed A. A. Al-qaness & Ahmed A. Ewees & Hong Fan & Mohamed Abd Elaziz, 2020. "Optimized Forecasting Method for Weekly Influenza Confirmed Cases," IJERPH, MDPI, vol. 17(10), pages 1-12, May.
    16. Jurado, Francisco & Saenz, José R., 2003. "An adaptive control scheme for biomass-based diesel–wind system," Renewable Energy, Elsevier, vol. 28(1), pages 45-57.
    17. Yakoub, Ghali & Mathew, Sathyajith & Leal, Joao, 2023. "Intelligent estimation of wind farm performance with direct and indirect ‘point’ forecasting approaches integrating several NWP models," Energy, Elsevier, vol. 263(PD).
    18. Jiani Heng & Chen Wang & Xuejing Zhao & Liye Xiao, 2016. "Research and Application Based on Adaptive Boosting Strategy and Modified CGFPA Algorithm: A Case Study for Wind Speed Forecasting," Sustainability, MDPI, vol. 8(3), pages 1-25, March.
    19. Liulei Bao & Guangcheng Zhang & Xinli Hu & Shuangshuang Wu & Xiangdong Liu, 2021. "Stage Division of Landslide Deformation and Prediction of Critical Sliding Based on Inverse Logistic Function," Energies, MDPI, vol. 14(4), pages 1-24, February.
    20. Cao, Qing & Ewing, Bradley T. & Thompson, Mark A., 2012. "Forecasting wind speed with recurrent neural networks," European Journal of Operational Research, Elsevier, vol. 221(1), pages 148-154.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:78:y:2015:i:2:p:879-893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.