IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v78y2015i2p855-877.html
   My bibliography  Save this article

The essence of multifractal detrended fluctuation technique to explore the dynamics of soil radon precursor for earthquakes

Author

Listed:
  • Chiranjib Barman
  • Hirok Chaudhuri
  • Argha Deb
  • Debasis Ghose
  • Bikash Sinha

Abstract

The present paper deals with the application of multifractal detrended fluctuation analysis technique on soil radon-222 time series data recorded at Earthquake Precursory Observatory at TattaPani, Jammu and Kashmir, India. The earth being a complicated dynamic system composed of diverse rock types subjected to spatially varying stress patterns, understanding seismic activity-induced soil gas anomaly in such a complex scenario calls for using nonlinear statistical techniques. Therefore, we have adopted several multifractal parameters especially the generalised Hurst exponent, scaling exponent as well as the multifractal spectrum of the radon time series to the problem. A 2-month data (November 5 to December 31, 2012) on soil radon taken at 10-min interval show a wide variation from 2.34 to 58.99 kBq/m 3 with four prominent fluctuations (>mean ± 2σ). The data consists of several nonlinear features such as fractal structures and long-range correlation. The observed nonlinear characteristics are pointed to seismic-induced physico-chemical instability within the earth’s interior. The estimated local fluctuations or root mean square values greatly assist to distinguish the anomalous pattern present in the recorded time series data. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Chiranjib Barman & Hirok Chaudhuri & Argha Deb & Debasis Ghose & Bikash Sinha, 2015. "The essence of multifractal detrended fluctuation technique to explore the dynamics of soil radon precursor for earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 855-877, September.
  • Handle: RePEc:spr:nathaz:v:78:y:2015:i:2:p:855-877
    DOI: 10.1007/s11069-015-1747-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1747-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1747-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    2. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    3. Barat, P. & Das, NishithKr. & Ghose, Debasis & Sinha, Bikash, 1999. "Fractal pattern in hydrothermal emission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 262(1), pages 9-15.
    4. Jens Hartmann & Jason Levy, 2005. "Hydrogeological and Gasgeochemical Earthquake Precursors – A Review for Application," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 34(3), pages 279-304, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kar, Alpa & Chatterjee, Sucharita & Ghosh, Dipak, 2019. "Multifractal detrended cross correlation analysis of Land-surface temperature anomalies and Soil radon concentration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 236-247.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oussama Tilfani & My Youssef El Boukfaoui, 2020. "Multifractal Analysis of African Stock Markets During the 2007–2008 US Crisis," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-31, January.
    2. Li, Shuping & Lu, Xinsheng & Li, Jianfeng, 2021. "Cross-correlations between the P2P interest rate, Shibor and treasury yields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    3. Jamshid Ardalankia & Mohammad Osoolian & Emmanuel Haven & G. Reza Jafari, 2019. "Scaling Features of Price-Volume Cross-Correlation," Papers 1903.01744, arXiv.org, revised Aug 2020.
    4. Hasan, Rashid & Mohammad, Salim M., 2015. "Multifractal analysis of Asian markets during 2007–2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 746-761.
    5. Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
    6. Stosic, Dusan & Stosic, Darko & Stosic, Tatijana, 2019. "Nonextensive triplets in stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 192-198.
    7. Caraiani, Petre & Haven, Emmanuel, 2015. "Evidence of multifractality from CEE exchange rates against Euro," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 395-407.
    8. Siqueira, Erinaldo Leite & Stošić, Tatijana & Bejan, Lucian & Stošić, Borko, 2010. "Correlations and cross-correlations in the Brazilian agrarian commodities and stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2739-2743.
    9. Yang, Honglin & Wan, Hong & Zha, Yong, 2013. "Autocorrelation type, timescale and statistical property in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1681-1693.
    10. Lahmiri, Salim, 2017. "Multifractal analysis of Moroccan family business stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 183-191.
    11. Stanley, H.Eugene, 2003. "Statistical physics and economic fluctuations: do outliers exist?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 318(1), pages 279-292.
    12. Ardalankia, Jamshid & Osoolian, Mohammad & Haven, Emmanuel & Jafari, G. Reza, 2020. "Scaling features of price–volume cross correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    13. Arias-Calluari, Karina & Najafi, Morteza. N. & Harré, Michael S. & Tang, Yaoyue & Alonso-Marroquin, Fernando, 2022. "Testing stationarity of the detrended price return in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    14. Bai, Man-Ying & Zhu, Hai-Bo, 2010. "Power law and multiscaling properties of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1883-1890.
    15. Karina Arias-Calluari & Morteza. N. Najafi & Michael S. Harr'e & Fernando Alonso-Marroquin, 2019. "Stationarity of the detrended price return in stock markets," Papers 1910.01034, arXiv.org, revised Aug 2020.
    16. Wang, Lei & Liu, Lutao, 2020. "Long-range correlation and predictability of Chinese stock prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    17. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    18. Stošić, Dusan & Stošić, Darko & Stošić, Tatijana & Eugene Stanley, H., 2015. "Multifractal properties of price change and volume change of stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 46-51.
    19. Dusan Stosic & Darko Stosic & Tatijana Stosic, 2019. "Nonextensive triplets in stock market indices," Papers 1901.07721, arXiv.org.
    20. Yang, Yujun & Li, Jianping & Yang, Yimei, 2017. "The cross-correlation analysis of multi property of stock markets based on MM-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 23-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:78:y:2015:i:2:p:855-877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.