IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v34y2005i3p279-304.html
   My bibliography  Save this article

Hydrogeological and Gasgeochemical Earthquake Precursors – A Review for Application

Author

Listed:
  • Jens Hartmann
  • Jason Levy

Abstract

Even if earthquake precursory signals can be identified, how can they be useful? This paper investigates relationships among the attributes of 229 proposed earthquake related gasgeochemical and hydrogeological precursory signals, and applies these results to improve future earthquake prediction strategies. Sub-groups of these reported signals and relationships between sub-groups are established using parameters, including earthquake magnitude, signal duration, precursory time, and epicentral distance to the monitoring site (original studies are used wherever possible to improve data quality). A strong correlation (r=0.86) between signal duration and precursory time was identified. This suggests a relationship between the investigated precursory signals and tectonic processes related to the referenced earthquakes. Moreover, these signals are categorized into four groups, reflecting differences in monitoring station densities, measurement methods and physical processes related to signal occurrence: (a) radon exhalation from the earth’s crust, (b) exhalation of other gases (helium, argon and others), (c) temporal variation in water level or discharge of springs and (d) temporal variation in temperature and dissolved ions in the water of the monitoring sites. In addition, boundary functions are used to separate signal group subsets. Finally, it is shown how these boundary functions can be used in the context of an earthquake prediction strategy by identifying potential minimum magnitudes and maximum epicentral distances from the monitoring site. Copyright Springer 2005

Suggested Citation

  • Jens Hartmann & Jason Levy, 2005. "Hydrogeological and Gasgeochemical Earthquake Precursors – A Review for Application," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 34(3), pages 279-304, March.
  • Handle: RePEc:spr:nathaz:v:34:y:2005:i:3:p:279-304
    DOI: 10.1007/s11069-004-2072-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-004-2072-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-004-2072-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timangshu Chetia & Saurabh Baruah & Chandan Dey & Santanu Baruah & Sangeeta Sharma, 2022. "Seismic induced soil gas radon anomalies observed at multiparametric geophysical observatory, Tezpur (Eastern Himalaya), India: an appraisal of probable model for earthquake forecasting based on peak ," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 3071-3098, April.
    2. Saheli Chowdhury & Argha Deb & Chiranjib Barman & Md. Nurujjaman & Dipok K. Bora, 2022. "Simultaneous monitoring of soil 222Rn in the Eastern Himalayas and the geothermal region of eastern India: an earthquake precursor," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1477-1502, June.
    3. Arvind Kumar & Vivek Walia & Baldev Arora & Tsanyao Yang & Shih-Jung Lin & Ching-Chou Fu & Cheng-Hong Chen & Kuo-Liang Wen, 2015. "Identifications and removal of diurnal and semidiurnal variations in radon time series data of Hsinhua monitoring station in SW Taiwan using singular spectrum analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 317-330, October.
    4. Chiranjib Barman & Hirok Chaudhuri & Argha Deb & Debasis Ghose & Bikash Sinha, 2015. "The essence of multifractal detrended fluctuation technique to explore the dynamics of soil radon precursor for earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 855-877, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:34:y:2005:i:3:p:279-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.