IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v44y1998i12-part-2ps257-s270.html
   My bibliography  Save this article

An Application of Copulas to Accident Precursor Analysis

Author

Listed:
  • Woojune Yi

    (System and Communication Research Laboratory, Korea Electric Power Research Institute, Taejeon, Korea)

  • Vicki M. Bier

    (Department of Industrial Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706)

Abstract

Data on accident precursors can help in estimating accident frequencies, since they provide a rich source of information on intersystem dependencies. However, Bayesian analysis of accident precursors requires the ability to construct joint prior distributions reflecting such dependencies. For example, the failure probabilities of a particular safety system under normal and accident conditions, respectively, will generally not be identical (because of the effects of the accident), but will almost certainly be correlated (since both failure probabilities reflect the performance of the same components, with the same inherent levels of reliability). In this paper, we explore the use of copulas (a method of representing joint distribution functions with particular marginals) to construct the needed prior distributions, and then use these distributions in a Bayesian analysis of hypothetical precursor data. This demonstrates the usefulness of copulas in practice. The same approach can also be used in a wide variety of other contexts where joint distributions with particular marginals are desired.

Suggested Citation

  • Woojune Yi & Vicki M. Bier, 1998. "An Application of Copulas to Accident Precursor Analysis," Management Science, INFORMS, vol. 44(12-Part-2), pages 257-270, December.
  • Handle: RePEc:inm:ormnsc:v:44:y:1998:i:12-part-2:p:s257-s270
    DOI: 10.1287/mnsc.44.12.S257
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.44.12.S257
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.44.12.S257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mohamed N. Jouini & Robert T. Clemen, 1996. "Copula Models for Aggregating Expert Opinions," Operations Research, INFORMS, vol. 44(3), pages 444-457, June.
    2. Bier, Vicki M. & Yi, Woojune, 1995. "A Bayesian method for analyzing dependencies in precursor data," International Journal of Forecasting, Elsevier, vol. 11(1), pages 25-41, March.
    3. Tat-Chi Chow & Robert M. Oliver & G. Anthony Vignaux, 1990. "A Bayesian Escalation Model to Predict Nuclear Accidents and Risk," Operations Research, INFORMS, vol. 38(2), pages 265-277, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meade, Nigel & Islam, Towhidul, 2010. "Using copulas to model repeat purchase behaviour - An exploratory analysis via a case study," European Journal of Operational Research, Elsevier, vol. 200(3), pages 908-917, February.
    2. Tianyang Wang & James S. Dyer, 2012. "A Copulas-Based Approach to Modeling Dependence in Decision Trees," Operations Research, INFORMS, vol. 60(1), pages 225-242, February.
    3. van Dorp, J. Rene, 2005. "Statistical dependence through common risk factors: With applications in uncertainty analysis," European Journal of Operational Research, Elsevier, vol. 161(1), pages 240-255, February.
    4. Hernández-Bastida, A. & Fernández-Sánchez, M.P. & Gómez-Déniz, E., 2009. "The net Bayes premium with dependence between the risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 247-254, October.
    5. Samuel Kotz & Johan René van Dorp, 2010. "Generalized Diagonal Band Copulas with Two-Sided Generating Densities," Decision Analysis, INFORMS, vol. 7(2), pages 196-214, June.
    6. Nima Khakzad & Sina Khakzad & Faisal Khan, 2014. "Probabilistic risk assessment of major accidents: application to offshore blowouts in the Gulf of Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1759-1771, December.
    7. Ali E. Abbas, 2009. "Multiattribute Utility Copulas," Operations Research, INFORMS, vol. 57(6), pages 1367-1383, December.
    8. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    9. Agustín Hernández-Bastida & M. Fernández-Sánchez, 2012. "A Sarmanov family with beta and gamma marginal distributions: an application to the Bayes premium in a collective risk model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(4), pages 391-409, November.
    10. Khakzad, Nima & Khan, Faisal & Paltrinieri, Nicola, 2014. "On the application of near accident data to risk analysis of major accidents," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 116-125.
    11. Jinshu Cui & Heather Rosoff & Richard S. John, 2017. "A Polytomous Item Response Theory Model for Measuring Near-Miss Appraisal as a Psychological Trait," Decision Analysis, INFORMS, vol. 14(2), pages 75-86, June.
    12. Robert T. Clemen & Terence Reilly, 1999. "Correlations and Copulas for Decision and Risk Analysis," Management Science, INFORMS, vol. 45(2), pages 208-224, February.
    13. Donald L. Keefer & Craig W. Kirkwood & James L. Corner, 2004. "Perspective on Decision Analysis Applications, 1990–2001," Decision Analysis, INFORMS, vol. 1(1), pages 4-22, March.
    14. J. Eric Bickel & James E. Smith, 2006. "Optimal Sequential Exploration: A Binary Learning Model," Decision Analysis, INFORMS, vol. 3(1), pages 16-32, March.
    15. Wagner, Stephan M. & Bode, Christoph & Koziol, Philipp, 2009. "Supplier default dependencies: Empirical evidence from the automotive industry," European Journal of Operational Research, Elsevier, vol. 199(1), pages 150-161, November.
    16. Robin L. Dillon & Catherine H. Tinsley, 2008. "How Near-Misses Influence Decision Making Under Risk: A Missed Opportunity for Learning," Management Science, INFORMS, vol. 54(8), pages 1425-1440, August.
    17. Ali E. Abbas & David V. Budescu & Yuhong (Rola) Gu, 2010. "Assessing Joint Distributions with Isoprobability Contours," Management Science, INFORMS, vol. 56(6), pages 997-1011, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    2. Fantazzini, Dean, 2010. "Three-stage semi-parametric estimation of T-copulas: Asymptotics, finite-sample properties and computational aspects," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2562-2579, November.
    3. Patrick Afflerbach & Christopher Dun & Henner Gimpel & Dominik Parak & Johannes Seyfried, 2021. "A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 329-348, August.
    4. Donnacha Bolger & Brett Houlding, 2016. "Reliability updating in linear opinion pooling for multiple decision makers," Journal of Risk and Reliability, , vol. 230(3), pages 309-322, June.
    5. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    6. Wilson, Kevin J., 2017. "An investigation of dependence in expert judgement studies with multiple experts," International Journal of Forecasting, Elsevier, vol. 33(1), pages 325-336.
    7. Mendes, Beatriz Vaz de Melo & Arslan, Olcay, 2006. "Multivariate Skew Distributions Based on the GT-Copula," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 26(2), November.
    8. Fang, Hong-Bin & Fang, Kai-Tai & Kotz, Samuel, 2002. "The Meta-elliptical Distributions with Given Marginals," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 1-16, July.
    9. Durante Fabrizio & Puccetti Giovanni & Scherer Matthias & Vanduffel Steven, 2017. "My introduction to copulas: An interview with Roger Nelsen," Dependence Modeling, De Gruyter, vol. 5(1), pages 88-98, January.
    10. Jason R. W. Merrick, 2008. "Getting the Right Mix of Experts," Decision Analysis, INFORMS, vol. 5(1), pages 43-52, March.
    11. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    12. Erin Baker & Olaitan Olaleye, 2013. "Combining Experts: Decomposition and Aggregation Order," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 1116-1127, June.
    13. Cooke, Roger M. & ElSaadany, Susie & Huang, Xinzheng, 2008. "On the performance of social network and likelihood-based expert weighting schemes," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 745-756.
    14. Robert T. Clemen & Terence Reilly, 1999. "Correlations and Copulas for Decision and Risk Analysis," Management Science, INFORMS, vol. 45(2), pages 208-224, February.
    15. Zhang, Nan & Huang, Hong & Su, Boni & Zhao, Jinlong & Zhang, Bo, 2014. "Dynamic 8-state ICSAR rumor propagation model considering official rumor refutation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 333-346.
    16. Tianyang Wang & James S. Dyer, 2012. "A Copulas-Based Approach to Modeling Dependence in Decision Trees," Operations Research, INFORMS, vol. 60(1), pages 225-242, February.
    17. James K. Hammitt & Alexander I. Shlyakhter, 1999. "The Expected Value of Information and the Probability of Surprise," Risk Analysis, John Wiley & Sons, vol. 19(1), pages 135-152, February.
    18. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    19. Martin Folch-Calvo & Francisco Brocal-Fernández & Cristina González-Gaya & Miguel A. Sebastián, 2020. "Analysis and Characterization of Risk Methodologies Applied to Industrial Parks," Sustainability, MDPI, vol. 12(18), pages 1-35, September.
    20. Luca Regis, 2011. "A Bayesian copula model for stochastic claims reserving," Carlo Alberto Notebooks 227, Collegio Carlo Alberto.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:44:y:1998:i:12-part-2:p:s257-s270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.