IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v74y2014i3p1683-1705.html
   My bibliography  Save this article

Probabilistic seismic hazard analysis at a strategic site in the Bay of Bengal

Author

Listed:
  • Sara Trianni
  • Carlo Lai
  • Erio Pasqualini

Abstract

Probabilistic seismic hazard analysis (PSHA) along the route of an offshore pipeline for the transport of oil in the Bay of Bengal has been performed, in order to set up design parameters and identify possible geohazards. The complexity of geological and seismotectonic setting of the region where the pipeline is planned to be installed is the result of the interaction of the Indian, Eurasian and Burmese tectonic plates. In order to properly account for the intricate way by which these plates interact, a large area extending 450 km from the pipeline route has been considered for the compilation of a comprehensive earthquake catalogue, spanning the period 1663–2012 AD. Differently from earlier PSHA analyses conducted in the region based on assuming two-dimensional polygons as seismogenic provinces, this study adopted a seismotectonic source model which also includes for the first time a linear tectonic lineament representing the northward extension of the Sunda mega thrust, responsible for the large Sumatra–Andaman earthquake of 26 December 2004. Hazard computations have been performed over a grid of sites spaced 0.045° covering a rectangular area which contains the pipeline. Epistemic uncertainty in the hazard computations has been taken into account by a logic tree framework, incorporating different seismotectonic source models, maximum cut-off magnitude and ground-motion prediction equations. Horizontal median uniform hazard spectra and median uniform hazard spectra plus and minus one sigma on stiff ground have been calculated at the selected sites for different return periods. Peak ground acceleration with 10 % probability of exceedance in 50 years has been compared with values from previous hazard studies available for Bangladesh. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Sara Trianni & Carlo Lai & Erio Pasqualini, 2014. "Probabilistic seismic hazard analysis at a strategic site in the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1683-1705, December.
  • Handle: RePEc:spr:nathaz:v:74:y:2014:i:3:p:1683-1705
    DOI: 10.1007/s11069-014-1268-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1268-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1268-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Phil R. Cummins, 2007. "The potential for giant tsunamigenic earthquakes in the northern Bay of Bengal," Nature, Nature, vol. 449(7158), pages 75-78, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Zillur Rahman & Sumi Siddiqua & A. S. M. Maksud Kamal, 2020. "Seismic source modeling and probabilistic seismic hazard analysis for Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2489-2532, September.
    2. A. A. Malinowska, 2016. "Reliability of methods used for pipeline hazard evaluation in view of potential risk factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 715-728, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Narayana, 2011. "Tectonic geomorphology, tsunamis and environmental hazards: reference to Andaman-Nicobar Islands," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(1), pages 65-82, April.
    2. Panon Latcharote & Khaled Al-Salem & Anawat Suppasri & Tanuspong Pokavanich & Shinji Toda & Yogeesha Jayaramu & Abdullah Al-Enezi & Alanoud Al-Ragum & Fumihiko Imamura, 2018. "Tsunami hazard evaluation for Kuwait and Arabian Gulf due to Makran Subduction Zone and Subaerial landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 127-152, September.
    3. Till J. J. Hanebuth & Hermann R. Kudrass & Anja M. Zander & Humayun Syed Akhter & Gertrud Neumann-Denzau & Anwar Zahid, 2022. "Stepwise, earthquake-driven coastal subsidence in the Ganges–Brahmaputra Delta (Sundarbans) since the eighth century deduced from submerged in situ kiln and mangrove remnants," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 163-190, March.
    4. Elizabeth L. Chamberlain & Steven L. Goodbred & Michael S. Steckler & Jakob Wallinga & Tony Reimann & Syed Humayun Akhter & Rachel Bain & Golam Muktadir & Abdullah Al Nahian & F. M. Arifur Rahman & Ma, 2024. "Cascading hazards of a major Bengal basin earthquake and abrupt avulsion of the Ganges River," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Joaquin Rodriguez-Vidal & Jose Rodriguez-Llanes & Debarati Guha-Sapir, 2012. "Civil nuclear power at risk of tsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1273-1278, September.
    6. Aftab Khan, 2012. "Seismogenic sources in the Bay of Bengal vis-à-vis potential for tsunami generation and its impact in the northern Bay of Bengal coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1127-1141, April.
    7. Md. Zillur Rahman & Sumi Siddiqua & A. S. M. Maksud Kamal, 2020. "Seismic source modeling and probabilistic seismic hazard analysis for Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2489-2532, September.
    8. Edris Alam & Dale Dominey-Howes, 2014. "An analysis of the AD1762 earthquake and tsunami in SE Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 903-933, January.
    9. S. Sangode & D. Meshram, 2013. "A comparative study on the style of paleotsunami deposits at two sites on the west coast of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 463-483, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:74:y:2014:i:3:p:1683-1705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.