IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v70y2014i1p903-933.html
   My bibliography  Save this article

An analysis of the AD1762 earthquake and tsunami in SE Bangladesh

Author

Listed:
  • Edris Alam
  • Dale Dominey-Howes

Abstract

In AD1762, a large earthquake originating within the Arakan Subduction Zone occurred. However, conflicting opinions exist as to whether this earthquake triggered a major regional tsunami in the northern Bay of Bengal (BoB) that struck southeast Bangladesh. This research aims to review and assess the effects of the AD1762 earthquake in Bangladesh and reviews what effects associated tsunamis had along the coast of southeast Bangladesh. Through field visits and investigations, this research confirms the locations of liquefaction, compaction, landslides, co-seismic subsidence, deaths and injuries using the descriptions of historical documents as a guide. The earthquake triggered land-level changes where the soil is young and soft, and these areas are located adjacent to the coast of the BoB and along the banks of the Karnafuli, Halda and Meghna rivers. The earthquake probably generated several submarine sediment slides that triggered local tsunamis that struck different locations (Bansbaria, Bharchhara and Burumchhara) along the Chittagong coast. Following an analysis of the earthquake effects, we consider that a repeat of the AD1762 earthquake would result in significant damage to fragile infrastructure and to vulnerable communities in Bangladesh. Further, we recommend (1) conducting geological and geomorphological studies at key sites to assess the nature and extent of land-level changes; (2) undertaking socially oriented community vulnerability assessments to earthquakes and tsunamis; and (3) implementing a variety of risk-reduction strategies to reduce vulnerability and enhance resilience to future events. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Edris Alam & Dale Dominey-Howes, 2014. "An analysis of the AD1762 earthquake and tsunami in SE Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 903-933, January.
  • Handle: RePEc:spr:nathaz:v:70:y:2014:i:1:p:903-933
    DOI: 10.1007/s11069-013-0841-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0841-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0841-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aftab Khan, 2012. "Seismogenic sources in the Bay of Bengal vis-à-vis potential for tsunami generation and its impact in the northern Bay of Bengal coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1127-1141, April.
    2. Dale Dominey-Howes, 2002. "Documentary and Geological Records of Tsunamis in the Aegean Sea Region of Greece and their Potential Value to Risk Assessment and Disaster Management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 25(3), pages 195-224, March.
    3. Phil R. Cummins, 2007. "The potential for giant tsunamigenic earthquakes in the northern Bay of Bengal," Nature, Nature, vol. 449(7158), pages 75-78, September.
    4. Yu Huang & Ximiao Jiang, 2010. "Field-observed phenomena of seismic liquefaction and subsidence during the 2008 Wenchuan earthquake in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 839-850, September.
    5. S. Dube & P. Chittibabu & P. Sinha & A. Rao & T. Murty, 2004. "Numerical Modelling of Storm Surge in the Head Bay of Bengal Using Location Specific Model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 31(2), pages 437-453, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Till J. J. Hanebuth & Hermann R. Kudrass & Anja M. Zander & Humayun Syed Akhter & Gertrud Neumann-Denzau & Anwar Zahid, 2022. "Stepwise, earthquake-driven coastal subsidence in the Ganges–Brahmaputra Delta (Sundarbans) since the eighth century deduced from submerged in situ kiln and mangrove remnants," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 163-190, March.
    2. Md Sohel Ahmed & Hiroshi Morita, 2018. "An Analysis of Housing Structures’ Earthquake Vulnerability in Two Parts of Dhaka City," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    3. Edris Alam, 2020. "Earthquake Hazard Knowledge, Preparedness, and Risk Reduction in the Bangladeshi Readymade Garment Industry," Sustainability, MDPI, vol. 12(23), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edris Alam & Dale Dominey-Howes, 2016. "A catalogue of earthquakes between 810BC and 2012 for the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 2031-2102, April.
    2. A. Narayana, 2011. "Tectonic geomorphology, tsunamis and environmental hazards: reference to Andaman-Nicobar Islands," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(1), pages 65-82, April.
    3. Xiao-Hua Bao & Guan-Lin Ye & Bin Ye, 2014. "Explanation of liquefaction in after shock of the 2011 great east Japan earthquake using numerical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1881-1897, December.
    4. A. D. Rao & Puja Upadhaya & Smita Pandey & Jismy Poulose, 2020. "Simulation of extreme water levels in response to tropical cyclones along the Indian coast: a climate change perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 151-172, January.
    5. Domenico Lombardi & Subhamoy Bhattacharya, 2014. "Liquefaction of soil in the Emilia-Romagna region after the 2012 Northern Italy earthquake sequence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1749-1770, September.
    6. Gour Paul & Ahmad Ismail, 2013. "Contribution of offshore islands in the prediction of water levels due to tide–surge interaction for the coastal region of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 13-25, January.
    7. Shitangsu Paul & Jayant Routray, 2011. "Household response to cyclone and induced surge in coastal Bangladesh: coping strategies and explanatory variables," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 477-499, May.
    8. Yu Huang & Zhuoqiang Wen, 2015. "Recent developments of soil improvement methods for seismic liquefaction mitigation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1927-1938, April.
    9. Panon Latcharote & Khaled Al-Salem & Anawat Suppasri & Tanuspong Pokavanich & Shinji Toda & Yogeesha Jayaramu & Abdullah Al-Enezi & Alanoud Al-Ragum & Fumihiko Imamura, 2018. "Tsunami hazard evaluation for Kuwait and Arabian Gulf due to Makran Subduction Zone and Subaerial landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 127-152, September.
    10. Tanveerul Islam & Richard Peterson, 2009. "Climatology of landfalling tropical cyclones in Bangladesh 1877–2003," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(1), pages 115-135, January.
    11. Till J. J. Hanebuth & Hermann R. Kudrass & Anja M. Zander & Humayun Syed Akhter & Gertrud Neumann-Denzau & Anwar Zahid, 2022. "Stepwise, earthquake-driven coastal subsidence in the Ganges–Brahmaputra Delta (Sundarbans) since the eighth century deduced from submerged in situ kiln and mangrove remnants," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 163-190, March.
    12. Ye-Shuang Xu & Run-Qiu Huang & Jie Han & Shui-Long Shen, 2013. "Evaluation of allowable withdrawn volume of groundwater based on observed data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 513-522, June.
    13. Changwei Yang & Jianjing Zhang & Feicheng Liu & Junwei Bi & Zhang Jun, 2015. "Analysis on Two Typical Landslide Hazard Phenomena in The Wenchuan Earthquake by Field Investigations and Shaking Table Tests," IJERPH, MDPI, vol. 12(8), pages 1-18, August.
    14. Hasan, Mohammad Monirul, 2014. "Climate change induced marginality: Households’ vulnerability in the meal consumption frequencies," MPRA Paper 88047, University Library of Munich, Germany.
    15. Michela Biasutti & Adam Sobel & Suzana Camargo & Timothy Creyts, 2012. "Projected changes in the physical climate of the Gulf Coast and Caribbean," Climatic Change, Springer, vol. 112(3), pages 819-845, June.
    16. Fjóla Sigtryggsdóttir & Jónas Snæbjörnsson & Lars Grande & Ragnar Sigbjörnsson, 2015. "Methodology for geohazard assessment for hydropower projects," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1299-1331, November.
    17. Elizabeth L. Chamberlain & Steven L. Goodbred & Michael S. Steckler & Jakob Wallinga & Tony Reimann & Syed Humayun Akhter & Rachel Bain & Golam Muktadir & Abdullah Al Nahian & F. M. Arifur Rahman & Ma, 2024. "Cascading hazards of a major Bengal basin earthquake and abrupt avulsion of the Ganges River," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Joaquin Rodriguez-Vidal & Jose Rodriguez-Llanes & Debarati Guha-Sapir, 2012. "Civil nuclear power at risk of tsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1273-1278, September.
    19. Aftab Khan, 2012. "Seismogenic sources in the Bay of Bengal vis-à-vis potential for tsunami generation and its impact in the northern Bay of Bengal coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1127-1141, April.
    20. Md. Zillur Rahman & Sumi Siddiqua & A. S. M. Maksud Kamal, 2020. "Seismic source modeling and probabilistic seismic hazard analysis for Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2489-2532, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:70:y:2014:i:1:p:903-933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.