IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v74y2014i2p639-659.html
   My bibliography  Save this article

Forecasting energy consumption in China following instigation of an energy-saving policy

Author

Listed:
  • Naiming Xie
  • Alan Pearman

Abstract

China is in a key stage of industrialization and urbanization, which brings a high economic growth rate accompanied by high energy consumption. To alleviate the unsustainable demand for energy consumption, China’s government has instigated an energy-saving policy to decrease energy consumption per unit gross domestic product (GDP) so as to improve energy efficiency. Based on analysing historical trends of energy consumption and GDP, we have applied an optimized single-variable discrete grey forecasting model [OSDGM (1, 1)] to measure the instigation effects of the energy-saving policy and forecast whether the planned reduction rate of energy consumption per unit GDP in the implementation stage could be accomplished or not. The results illustrate that China’s government has made major progress on energy saving even though the task is tough in the long run. The forecasting results indicate that it is difficult to accomplish the planned reduction rate of energy consumption per unit GDP at both the national and provincial levels. According to the economic growth rate of 2011 and 2012, nearly half of the provinces could not reach their planned reduction rate objectives. These conclusions are very important for China’s government both in terms of policy monitoring and development. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Naiming Xie & Alan Pearman, 2014. "Forecasting energy consumption in China following instigation of an energy-saving policy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 639-659, November.
  • Handle: RePEc:spr:nathaz:v:74:y:2014:i:2:p:639-659
    DOI: 10.1007/s11069-014-1200-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1200-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1200-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tso, Geoffrey K.F. & Yau, Kelvin K.W., 2007. "Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks," Energy, Elsevier, vol. 32(9), pages 1761-1768.
    2. Pao, Hsiao-Tien & Yu, Hsiao-Cheng & Yang, Yeou-Herng, 2011. "Modeling the CO2 emissions, energy use, and economic growth in Russia," Energy, Elsevier, vol. 36(8), pages 5094-5100.
    3. Wang, Yuanyuan & Wang, Jianzhou & Zhao, Ge & Dong, Yao, 2012. "Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China," Energy Policy, Elsevier, vol. 48(C), pages 284-294.
    4. Yuan, Chaoqing & Liu, Sifeng & Wu, Junlong, 2010. "The relationship among energy prices and energy consumption in China," Energy Policy, Elsevier, vol. 38(1), pages 197-207, January.
    5. Kumar, Ujjwal & Jain, V.K., 2010. "Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India," Energy, Elsevier, vol. 35(4), pages 1709-1716.
    6. Zou, Gao Lu, 2012. "The long-term relationships among China's energy consumption sources and adjustments to its renewable energy policy," Energy Policy, Elsevier, vol. 47(C), pages 456-467.
    7. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2011. "Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil," Energy, Elsevier, vol. 36(5), pages 2450-2458.
    8. Talha Yalta, A. & Cakar, Hatice, 2012. "Energy consumption and economic growth in China: A reconciliation," Energy Policy, Elsevier, vol. 41(C), pages 666-675.
    9. Kaza, Nikhil, 2010. "Understanding the spectrum of residential energy consumption: A quantile regression approach," Energy Policy, Elsevier, vol. 38(11), pages 6574-6585, November.
    10. Wang, Jianzhou & Dong, Yao & Wu, Jie & Mu, Ren & Jiang, He, 2011. "Coal production forecast and low carbon policies in China," Energy Policy, Elsevier, vol. 39(10), pages 5970-5979, October.
    11. Akay, Diyar & Atak, Mehmet, 2007. "Grey prediction with rolling mechanism for electricity demand forecasting of Turkey," Energy, Elsevier, vol. 32(9), pages 1670-1675.
    12. Yao, Ming-Jong & Chu, Weng-Ming, 2008. "A genetic algorithm for determining optimal replenishment cycles to minimize maximum warehouse space requirements," Omega, Elsevier, vol. 36(4), pages 619-631, August.
    13. Cadenas, E. & Jaramillo, O.A. & Rivera, W., 2010. "Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method," Renewable Energy, Elsevier, vol. 35(5), pages 925-930.
    14. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "A trigonometric grey prediction approach to forecasting electricity demand," Energy, Elsevier, vol. 31(14), pages 2839-2847.
    15. Morana, Claudio, 2001. "A semiparametric approach to short-term oil price forecasting," Energy Economics, Elsevier, vol. 23(3), pages 325-338, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Che-Jung Chang & Liping Yu & Peng Jin, 2016. "A mega-trend-diffusion grey forecasting model for short-term manufacturing demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1439-1445, December.
    2. Wang, Ce & Li, Bing-Bing & Liang, Qiao-Mei & Wang, Jin-Cheng, 2018. "Has China’s coal consumption already peaked? A demand-side analysis based on hybrid prediction models," Energy, Elsevier, vol. 162(C), pages 272-281.
    3. Xinhui Lu & Kaile Zhou & Felix T. S. Chan & Shanlin Yang, 2017. "Optimal scheduling of household appliances for smart home energy management considering demand response," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1639-1653, September.
    4. Li, Bing-Bing & Liang, Qiao-Mei & Wang, Jin-Cheng, 2015. "A comparative study on prediction methods for China's medium- and long-term coal demand," Energy, Elsevier, vol. 93(P2), pages 1671-1683.
    5. Zhiyu Fang & Ling Jiang & Zhong Fang, 2021. "Does Economic Policy Intervention Inhibit the Efficiency of China’s Green Energy Economy?," Sustainability, MDPI, vol. 13(23), pages 1-20, December.
    6. Renbo Liu & Yuhui Ge & Peng Zuo, 2023. "Study on Economic Data Forecasting Based on Hybrid Intelligent Model of Artificial Neural Network Optimized by Harris Hawks Optimization," Mathematics, MDPI, vol. 11(21), pages 1-28, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    2. Pao, Hsiao-Tien & Fu, Hsin-Chia & Tseng, Cheng-Lung, 2012. "Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model," Energy, Elsevier, vol. 40(1), pages 400-409.
    3. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    4. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Zhao, Ze & Wang, Jianzhou & Zhao, Jing & Su, Zhongyue, 2012. "Using a Grey model optimized by Differential Evolution algorithm to forecast the per capita annual net income of rural households in China," Omega, Elsevier, vol. 40(5), pages 525-532.
    6. Wang, Qiang & Li, Shuyu & Li, Rongrong & Ma, Minglu, 2018. "Forecasting U.S. shale gas monthly production using a hybrid ARIMA and metabolic nonlinear grey model," Energy, Elsevier, vol. 160(C), pages 378-387.
    7. Weiwei Pan & Lirong Jian & Tao Liu, 2019. "Grey system theory trends from 1991 to 2018: a bibliometric analysis and visualization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1407-1434, December.
    8. Wang, Shuai & Yu, Lean & Tang, Ling & Wang, Shouyang, 2011. "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, Elsevier, vol. 36(11), pages 6542-6554.
    9. Wu, Lifeng & Gao, Xiaohui & Xiao, Yanli & Yang, Yingjie & Chen, Xiangnan, 2018. "Using a novel multi-variable grey model to forecast the electricity consumption of Shandong Province in China," Energy, Elsevier, vol. 157(C), pages 327-335.
    10. Aydin, Gokhan, 2014. "Modeling of energy consumption based on economic and demographic factors: The case of Turkey with projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 382-389.
    11. Pao, Hsiao-Tien, 2009. "Forecast of electricity consumption and economic growth in Taiwan by state space modeling," Energy, Elsevier, vol. 34(11), pages 1779-1791.
    12. An, Ning & Zhao, Weigang & Wang, Jianzhou & Shang, Duo & Zhao, Erdong, 2013. "Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting," Energy, Elsevier, vol. 49(C), pages 279-288.
    13. Emami Javanmard, M. & Tang, Y. & Wang, Z. & Tontiwachwuthikul, P., 2023. "Forecast energy demand, CO2 emissions and energy resource impacts for the transportation sector," Applied Energy, Elsevier, vol. 338(C).
    14. Carlo Andrea Bollino & Francesco Asdrubali & Paolo Polinori & Simona Bigerna & Silvia Micheli & Claudia Guattari & Antonella Rotili, 2017. "A Note on Medium- and Long-Term Global Energy Prospects and Scenarios," Sustainability, MDPI, vol. 9(5), pages 1-25, May.
    15. Wu, Lifeng & Liu, Sifeng & Liu, Dinglin & Fang, Zhigeng & Xu, Haiyan, 2015. "Modelling and forecasting CO2 emissions in the BRICS (Brazil, Russia, India, China, and South Africa) countries using a novel multi-variable grey model," Energy, Elsevier, vol. 79(C), pages 489-495.
    16. Liu, Xiuli & Moreno, Blanca & García, Ana Salomé, 2016. "A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors," Energy, Elsevier, vol. 115(P1), pages 1042-1054.
    17. Nsangou, Jean Calvin & Kenfack, Joseph & Nzotcha, Urbain & Ngohe Ekam, Paul Salomon & Voufo, Joseph & Tamo, Thomas T., 2022. "Explaining household electricity consumption using quantile regression, decision tree and artificial neural network," Energy, Elsevier, vol. 250(C).
    18. Aneeque A. Mir & Mohammed Alghassab & Kafait Ullah & Zafar A. Khan & Yuehong Lu & Muhammad Imran, 2020. "A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons," Sustainability, MDPI, vol. 12(15), pages 1-35, July.
    19. Aftab Ahmed Almani & Xueshan Han, 2023. "Real-Time Pricing-Enabled Demand Response Using Long Short-Time Memory Deep Learning," Energies, MDPI, vol. 16(5), pages 1-13, March.
    20. Li, Guo-Dong & Masuda, Shiro & Nagai, Masatake, 2012. "An optimal hybrid model for atomic power generation prediction in Japan," Energy, Elsevier, vol. 45(1), pages 655-661.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:74:y:2014:i:2:p:639-659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.