IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v61y2012i2p647-659.html
   My bibliography  Save this article

Climate change impacts on extreme floods I: combining imperfect deterministic simulations and non-stationary frequency analysis

Author

Listed:
  • Ousmane Seidou
  • Andrea Ramsay
  • Ioan Nistor

Abstract

Flood quantiles are routinely used in hydrologic engineering to design hydraulic structures, optimize erosion control structure and map the extent of floodplains. As an increasing number of papers are pointing out cycles and trends in hydrologic time series, the use of stationary flood distributions leads to the overestimation or underestimation of the hydrologic risk at a given time. Several authors tried to address this problem by using probability distributions with time-varying parameters. The parameters of these distributions were assumed to follow a linear or quadratic trend in time, which may be valid for the short term but may lead to unrealistic long-term projections. On the other hand, deterministic rainfall-runoff models are able to successfully reproduce trends and cycles in stream flow data but can perform poorly in reproducing daily flows and flood peaks. Rainfall-runoff models typically have a better performance when simulation results are aggregated at a larger time scale (e.g. at a monthly time scale vs. at a daily time scale). The strengths of these two approaches are combined in this paper where the annual maximum of the time-averaged outputs of a hydrologic model are used to modulate the parameters of a non-stationary GEV model of the daily maximum flow. The method was applied to the Kemptville Creek located in Ontario, Canada, using the SWAT (Soil and Water Assessment Tool) model as rainfall-runoff model. The parameters of the non-stationary GEV model are then estimated using Monte Carlo Markov Chain, and the optimal span of the time windows over which the SWAT outputs were averaged was selected using Bayes factors. Results show that using the non-stationary GEV distribution with a location parameter linked to the maximum 9-day average flow provides a much better estimation of flood quantiles than applying a stationary frequency analysis to the simulated peak flows. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Ousmane Seidou & Andrea Ramsay & Ioan Nistor, 2012. "Climate change impacts on extreme floods I: combining imperfect deterministic simulations and non-stationary frequency analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 647-659, March.
  • Handle: RePEc:spr:nathaz:v:61:y:2012:i:2:p:647-659
    DOI: 10.1007/s11069-011-0052-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-0052-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-0052-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Adlouni, Salaheddine & Favre, Anne-Catherine & Bobee, Bernard, 2006. "Comparison of methodologies to assess the convergence of Markov chain Monte Carlo methods," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2685-2701, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Landucci, Gabriele & Necci, Amos & Antonioni, Giacomo & Tugnoli, Alessandro & Cozzani, Valerio, 2014. "Release of hazardous substances in flood events: Damage model for horizontal cylindrical vessels," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 125-145.
    2. Alexander Garcia-Aristizabal & Edoardo Bucchignani & Elisa Palazzi & Donatella D’Onofrio & Paolo Gasparini & Warner Marzocchi, 2015. "Analysis of non-stationary climate-related extreme events considering climate change scenarios: an application for multi-hazard assessment in the Dar es Salaam region, Tanzania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 289-320, January.
    3. Chi-Feng Chen & Chung-Ming Liu, 2014. "The definition of urban stormwater tolerance threshold and its conceptual estimation: an example from Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 173-190, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Yingge & Tobias, Justin L. & Mannering, Fred L., 2014. "The analysis of vehicle crash injury-severity data: A Markov switching approach with road-segment heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 109-128.
    2. Gonzalez, M. & Martin, J. & Martinez, R. & Mota, M., 2008. "Non-parametric Bayesian estimation for multitype branching processes through simulation-based methods," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1281-1291, January.
    3. Calderhead, Ben & Girolami, Mark, 2009. "Estimating Bayes factors via thermodynamic integration and population MCMC," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4028-4045, October.
    4. Jia, Xiang & Wang, Dong & Jiang, Ping & Guo, Bo, 2016. "Inference on the reliability of Weibull distribution with multiply Type-I censored data," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 171-181.
    5. Richard Andrew Iles, 2013. "Demand for primary healthcare in rural north India," 2013 Papers pil50, Job Market Papers.
    6. Stefan Habenschuss & Zeno Jonke & Wolfgang Maass, 2013. "Stochastic Computations in Cortical Microcircuit Models," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-28, November.
    7. Boulange, Julien & Watanabe, Hirozumi & Akai, Shinpei, 2017. "A Markov Chain Monte Carlo technique for parameter estimation and inference in pesticide fate and transport modeling," Ecological Modelling, Elsevier, vol. 360(C), pages 270-278.
    8. Alexander Garcia-Aristizabal & Edoardo Bucchignani & Elisa Palazzi & Donatella D’Onofrio & Paolo Gasparini & Warner Marzocchi, 2015. "Analysis of non-stationary climate-related extreme events considering climate change scenarios: an application for multi-hazard assessment in the Dar es Salaam region, Tanzania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 289-320, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:61:y:2012:i:2:p:647-659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.