IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v66y2013i2p229-247.html
   My bibliography  Save this article

Extracting the damaging effects of the 2010 eruption of Merapi volcano in Central Java, Indonesia

Author

Listed:
  • Fajar Yulianto
  • Parwati Sofan
  • Muhammad Khomarudin
  • Muhammad Haidar

Abstract

This research focuses on providing information related to the damaging effects of the 2010 eruption of Merapi volcano in Central Java, Indonesia. This information will be used to help emergency responders to assess losses more timely and efficiently, and to monitor the progress in emergency response and recovery. The objectives of this research are: (a) to generate a map of pyroclastic deposits based on activities pre- and post-volcano eruption of 2010 in the research area, (b) to investigate the impact of volcano eruption on the environment, and (c) to assess the impact of volcano eruption on landuse. ALOS PALSAR remote sensing data pre- and post-disaster were used in this research for mapping the volcano eruption. Topographic and geomorphological maps were analyzed for profiling and field orientation, which were used to investigate the impact of volcano eruption on the environment. SPOT 4 satellite images were used in this research for updating landuse information from the topographic map. The result of the landuse updated data was used for assessment of the volcano eruption’s impact on landuse with the GIS raster environment. The volcanic eruption that occurred in 2010 is estimated to have an impact of 133.31 ha for settlements, 92.32 ha for paddy fields, 235.60 ha for dry farming, 570.98 ha for plantations, 380.86 ha for bare land, and 0.12 ha for forest areas. An estimate of the number of buildings damaged due to the volcano eruption in 2010 was carried out by overlaying a map of pyroclastic deposits and the information point of the building sites from the topographic map. The total number of buildings damaged is estimated to be around 12,276 units. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Fajar Yulianto & Parwati Sofan & Muhammad Khomarudin & Muhammad Haidar, 2013. "Extracting the damaging effects of the 2010 eruption of Merapi volcano in Central Java, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 229-247, March.
  • Handle: RePEc:spr:nathaz:v:66:y:2013:i:2:p:229-247
    DOI: 10.1007/s11069-012-0438-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0438-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0438-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Ward & M. Marfai & F. Yulianto & D. Hizbaron & J. Aerts, 2011. "Coastal inundation and damage exposure estimation: a case study for Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 899-916, March.
    2. G. Toyos & P. Cole & A. Felpeto & J. Martí, 2007. "A GIS-based methodology for hazard mapping of small volume pyroclastic density currents," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 99-112, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Hu & Q. Wang & Z. Li & R. Xie & X. Zhang & Q. Sun, 2014. "Retrieving three-dimensional coseismic displacements of the 2008 Gaize, Tibet earthquake from multi-path interferometric phase analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1311-1322, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. A. Mashi & A. I. Inkani & Oghenejeabor Obaro & A. S. Asanarimam, 2020. "Community perception, response and adaptation strategies towards flood risk in a traditional African city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1727-1759, September.
    2. Grant Kaye & Jim Cole & Andrew King & David Johnston, 2009. "Comparison of risk from pyroclastic density current hazards to critical infrastructure in Mammoth Lakes, California, USA, from a new Inyo craters rhyolite dike eruption versus a dacitic dome eruption ," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(3), pages 477-499, December.
    3. Mehdi Hafezi & Oz Sahin & Rodney A. Stewart & Brendan Mackey, 2018. "Creating a Novel Multi-Layered Integrative Climate Change Adaptation Planning Approach Using a Systematic Literature Review," Sustainability, MDPI, vol. 10(11), pages 1-30, November.
    4. Grant Kaye & Jim Cole & Andrew King & David Johnston, 2009. "Comparison of risk from pyroclastic density current hazards to critical infrastructure in Mammoth Lakes, California, USA, from a new Inyo craters rhyolite dike eruption versus a dacitic dome eruption ," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(3), pages 541-563, June.
    5. Pini Wijayanti & Tono & Hastuti & Danang Pramudita, 2016. "Estimation of River Flood Damage in Jakarta: The Case of Pesanggrahan River," EEPSEA Research Report rr20160312, Economy and Environment Program for Southeast Asia (EEPSEA), revised Mar 2016.
    6. Robert Ogie & Tomas Holderness & Michelle Dunbar & Etienne Turpin, 2017. "Spatio-topological network analysis of hydrological infrastructure as a decision support tool for flood mitigation in coastal mega-cities," Environment and Planning B, , vol. 44(4), pages 718-739, July.
    7. Xinmeng Shan & Jie Yin & Jun Wang, 2022. "Risk assessment of shanghai extreme flooding under the land use change scenario," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1039-1060, January.
    8. Song-Yue Yang & Bing-Chen Jhong & You-Da Jhong & Tsung-Tang Tsai & Chang-Shian Chen, 2023. "Long short-term memory integrating moving average method for flood inundation depth forecasting based on observed data in urban area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2339-2361, March.
    9. Jonathan Procter & Shane Cronin & Thomas Platz & Abani Patra & Keith Dalbey & Michael Sheridan & Vince Neall, 2010. "Mapping block-and-ash flow hazards based on Titan 2D simulations: a case study from Mt. Taranaki, NZ," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(3), pages 483-501, June.
    10. Johnson Ankrah & Ana Monteiro & Helena Madureira, 2023. "Geospatiality of sea level rise impacts and communities’ adaptation: a bibliometric analysis and systematic review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1-31, March.
    11. José Marrero & Alicia García & Angeles Llinares & Servando Cruz-Reyna & Silvia Ramos & Ramón Ortiz, 2013. "Virtual tools for volcanic crisis management, and evacuation decision support: applications to El Chichón volcano (Chiapas, México)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 955-980, September.
    12. Muh Marfai & Andung Sekaranom & Philip Ward, 2015. "Community responses and adaptation strategies toward flood hazard in Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1127-1144, January.
    13. Thomas David Pol & Jochen Hinkel, 2019. "Uncertainty representations of mean sea-level change: a telephone game?," Climatic Change, Springer, vol. 152(3), pages 393-411, March.
    14. Fajar Yulianto & Parwati Sofan & Any Zubaidah & Kusumaning Sukowati & Junita Pasaribu & Muhammad Khomarudin, 2015. "Detecting areas affected by flood using multi-temporal ALOS PALSAR remotely sensed data in Karawang, West Java, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 959-985, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:66:y:2013:i:2:p:229-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.