IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v51y2009i3p501-524.html
   My bibliography  Save this article

Vulnerability index and capacity spectrum based methods for urban seismic risk evaluation. A comparison

Author

Listed:
  • Nieves Lantada
  • Luis Pujades
  • Alex Barbat

Abstract

This article contributes to the development and application of two latest-generation methods of seismic risk analysis in urban areas. The first method, namely vulnerability index method (VIM), considers five non-null damage states, defines the action in terms of macroseismic intensity and the seismic quality of the building by means of a vulnerability index. The estimated damage degree is measured by semi-empirical functions. The second method, namely capacity spectrum based method (CSBM), considers four no damage states, defines the seismic action in terms of response spectra and the building vulnerability by means of its capacity spectrum. In order to apply both methods to Barcelona (Spain) and compare the results, a deterministic and a probabilistic hazard scenario with soil effects are used. The deterministic one corresponds to a historic earthquake, while the probabilistic seismic ground motion has a probability of exceedence of 10% in 50 years. Detailed information on the building design has been obtained along years by collecting, arranging, improving, and completing the database of the dwellings of the city. A Geographic Information System (GIS) has been customized allowing storing, analysing, and displaying this large amount of spatial and tabular data of dwellings. The obtained results are highly consistent with the historical and modern evolution of the populated area and show the validity and strength of both methods. Although Barcelona has a low to moderate seismic hazard, its expected seismic risk is significant because of the high vulnerability of its buildings. Cities such as Barcelona, located in a low to moderate seismic hazard region, are usually not aware of the seismic risk. The detailed risk maps obtained offer a great opportunity to guide the decision making in the field of seismic risk prevention and mitigation in Barcelona, and for emergency planning in the city. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Nieves Lantada & Luis Pujades & Alex Barbat, 2009. "Vulnerability index and capacity spectrum based methods for urban seismic risk evaluation. A comparison," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(3), pages 501-524, December.
  • Handle: RePEc:spr:nathaz:v:51:y:2009:i:3:p:501-524
    DOI: 10.1007/s11069-007-9212-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-007-9212-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-007-9212-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jairo Valcárcel & Miguel Mora & Omar Cardona & Lluis Pujades & Alex Barbat & Gabriel Bernal, 2013. "Methodology and applications for the benefit cost analysis of the seismic risk reduction in building portfolios at broadscale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 845-868, October.
    2. Mohammad Ghobadi & Davood Fereidooni, 2012. "Seismic hazard assessment of the city of Hamedan and its vicinity, west of Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1025-1038, September.
    3. Mabel Marulanda & Martha Carreño & Omar Cardona & Mario Ordaz & Alex Barbat, 2013. "Probabilistic earthquake risk assessment using CAPRA: application to the city of Barcelona, Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 59-84, October.
    4. A. Castillo & F. López-Almansa & L. Pujades, 2011. "Seismic risk analysis of urban non-engineered buildings: application to an informal settlement in Mérida, Venezuela," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 891-916, November.
    5. Maurizio Pollino & Grazia Fattoruso & Luigi La Porta & Antonio Bruno Della Rocca & Valentina James, 2012. "Collaborative Open Source Geospatial Tools and Maps Supporting the Response Planning to Disastrous Earthquake Events," Future Internet, MDPI, vol. 4(2), pages 1-18, May.
    6. Mauro Niño & Miguel Jaimes & Eduardo Reinoso, 2015. "A risk index due to natural hazards based on the expected annual loss," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 215-236, October.
    7. Livio Pedone & Simona Bianchi & Sonia Giovinazzi & Stefano Pampanin, 2022. "A Framework and Tool for Knowledge-Based Seismic Risk Assessment of School Buildings: SLaMA-School," Sustainability, MDPI, vol. 14(16), pages 1-27, August.
    8. Yeudy F. Vargas-Alzate & Nieves Lantada & Ramón González-Drigo & Luis G. Pujades, 2020. "Seismic Risk Assessment Using Stochastic Nonlinear Models," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    9. Armando Aguilar-Meléndez & Lluis G. Pujades & Alex H. Barbat & Marisol Monterrubio-Velasco & Josep Puente & Nieves Lantada, 2022. "Comparative analysis of a new assessment of the seismic risk of residential buildings of two districts of Barcelona," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1649-1691, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:51:y:2009:i:3:p:501-524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.