IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v48y2009i2p275-294.html
   My bibliography  Save this article

Urban social vulnerability assessment with physical proxies and spatial metrics derived from air- and spaceborne imagery and GIS data

Author

Listed:
  • Annemarie Ebert
  • Norman Kerle
  • Alfred Stein

Abstract

Risk management in urban planning is of increasing importance to mitigate the growing amount of damage and the increasing number of casualties caused by natural disasters. Risk assessment to support management requires knowledge about present and future hazards, elements at risk and different types of vulnerability. This article deals with the assessment of social vulnerability (SV). In the past this has frequently been neglected due to lack of data and assessment difficulties. Existing approaches for SV assessment, primarily based on community-based methods or on census data, have limited efficiency and transferability. In this article a new method based on contextual analysis of image and GIS data is presented. An approach based on proxy variables that were derived from high-resolution optical and laser scanning data was applied, in combination with elevation information and existing hazard data. Object-oriented image analysis was applied for the definition and estimation of those variables, focusing on SV indicators with physical characteristics. A reference Social Vulnerability Index (SVI) was created from census data available for the study area on a neighbourhood level and tested for parts of Tegucigalpa, Honduras. For the evaluation of the proxy-variables, a stepwise regression model to select the best explanatory variables for changes in the SVI was applied. Eight out of 47 variables explained almost 60% of the variance, whereby the slope position and the proportion of built-up area in a neighbourhood were found to be the most valuable proxies. This work shows that contextual segmentation-based analysis of geospatial data can substantially aid in SV assessment and, when combined with field-based information, leads to optimization in terms of assessment frequency and cost. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Annemarie Ebert & Norman Kerle & Alfred Stein, 2009. "Urban social vulnerability assessment with physical proxies and spatial metrics derived from air- and spaceborne imagery and GIS data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 275-294, February.
  • Handle: RePEc:spr:nathaz:v:48:y:2009:i:2:p:275-294
    DOI: 10.1007/s11069-008-9264-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-008-9264-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-008-9264-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marina Mueller & Karl Segl & Uta Heiden & Hermann Kaufmann, 2006. "Potential of High-Resolution Satellite Data in the Context of Vulnerability of Buildings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(1), pages 247-258, May.
    2. W. Adger & P. Kelly, 1999. "Social Vulnerability to Climate Change and the Architecture of Entitlements," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 4(3), pages 253-266, September.
    3. George Clark & Susanne Moser & Samuel Ratick & Kirstin Dow & William Meyer & Srinivas Emani & Weigen Jin & Jeanne Kasperson & Roger Kasperson & Harry Schwarz, 1998. "Assessing the Vulnerability of Coastal Communities to Extreme Storms: The Case of Revere, MA., USA," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 3(1), pages 59-82, January.
    4. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    5. C. Haque & David Etkin, 2007. "People and community as constituent parts of hazards: the significance of societal dimensions in hazards analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(2), pages 271-282, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabio Cian & Carlo Giupponi & Mattia Marconcini, 2021. "Integration of earth observation and census data for mapping a multi-temporal flood vulnerability index: a case study on Northeast Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2163-2184, April.
    2. Sebastien Biass & Corine Frischknecht & Costanza Bonadonna, 2012. "A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador-Part II: vulnerability and risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 615-639, October.
    3. Seunghoo Jeong & D. K. Yoon, 2018. "Examining Vulnerability Factors to Natural Disasters with a Spatial Autoregressive Model: The Case of South Korea," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    4. Esfandiar Zebardast, 2013. "Constructing a social vulnerability index to earthquake hazards using a hybrid factor analysis and analytic network process (F’ANP) model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1331-1359, February.
    5. Chukwuedozie K. Ajaero, 2017. "A gender perspective on the impact of flood on the food security of households in rural communities of Anambra state, Nigeria," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(4), pages 685-695, August.
    6. Christian Geiß & Hannes Taubenböck, 2017. "One step back for a leap forward: toward operational measurements of elements at risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 1-6, March.
    7. Sebastien Biass & Corine Frischknecht & Costanza Bonadonna, 2013. "A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 497-521, January.
    8. Hameeda Sultan & Jinyan Zhan & Wajid Rashid & Xi Chu & Eve Bohnett, 2022. "Systematic Review of Multi-Dimensional Vulnerabilities in the Himalayas," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
    9. Suyeon Kim & Sang-Woo Lee & Se-Rin Park & Yeeun Shin & Kyungjin An, 2021. "Socioeconomic Risks and Their Impacts on Ecological River Health in South Korea: An Application of the Analytic Hierarchy Process," Sustainability, MDPI, vol. 13(11), pages 1-15, June.
    10. Jose Manuel Diaz-Sarachaga & Daniel Jato-Espino, 2020. "Analysis of vulnerability assessment frameworks and methodologies in urban areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 437-457, January.
    11. Christian Geiß & Hannes Taubenböck, 2013. "Remote sensing contributing to assess earthquake risk: from a literature review towards a roadmap," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(1), pages 7-48, August.
    12. Akiko Masuya & Ashraf Dewan & Robert Corner, 2015. "Population evacuation: evaluating spatial distribution of flood shelters and vulnerable residential units in Dhaka with geographic information systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1859-1882, September.
    13. Stefanos Stefanidis & Dimitrios Stathis, 2013. "Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 569-585, September.
    14. Navdeep Agrawal & Laxmi Gupta & Jagabandhu Dixit, 2021. "Assessment of the Socioeconomic Vulnerability to Seismic Hazards in the National Capital Region of India Using Factor Analysis," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    15. Md. Mashrur Rahman & Uttama Barua & Farzana Khatun & Ishrat Islam & Rezwana Rafiq, 2018. "Participatory Vulnerability Reduction (PVR): an urban community-based approach for earthquake management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1479-1505, September.
    16. Iuliana Armaş, 2012. "Multi-criteria vulnerability analysis to earthquake hazard of Bucharest, Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1129-1156, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cibele Oliveira Lima & Jarbas Bonetti, 2020. "Bibliometric analysis of the scientific production on coastal communities’ social vulnerability to climate change and to the impact of extreme events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1589-1610, July.
    2. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    3. Arouri, Mohamed & Nguyen, Cuong & Youssef, Adel Ben, 2015. "Natural Disasters, Household Welfare, and Resilience: Evidence from Rural Vietnam," World Development, Elsevier, vol. 70(C), pages 59-77.
    4. Mohsen Alizadeh & Esmaeil Alizadeh & Sara Asadollahpour Kotenaee & Himan Shahabi & Amin Beiranvand Pour & Mahdi Panahi & Baharin Bin Ahmad & Lee Saro, 2018. "Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    5. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    6. Lisa Rygel & David O’sullivan & Brent Yarnal, 2006. "A Method for Constructing a Social Vulnerability Index: An Application to Hurricane Storm Surges in a Developed Country," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(3), pages 741-764, May.
    7. Piya, Luni & Maharjan, Keshav Lall & Joshi, Niraj Prakash, 2012. "Vulnerability of rural households to climate change and extremes: Analysis of Chepang households in the Mid-Hills of Nepal," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126191, International Association of Agricultural Economists.
    8. Mrittika Basu & Satoshi Hoshino & Shizuka Hashimoto, 2016. "A pragmatic analysis of water supply and demand, and adaptive capacity in rural areas: development of Rural Water Insecurity Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 447-466, March.
    9. Zachary T. Goodman & Caitlin A. Stamatis & Justin Stoler & Christopher T. Emrich & Maria M. Llabre, 2021. "Methodological challenges to confirmatory latent variable models of social vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2731-2749, April.
    10. Galateia Terti & Isabelle Ruin & Jonathan J. Gourley & Pierre Kirstetter & Zachary Flamig & Juliette Blanchet & Ami Arthur & Sandrine Anquetin, 2019. "Toward Probabilistic Prediction of Flash Flood Human Impacts," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 140-161, January.
    11. Nathan Wood & Christopher Burton & Susan Cutter, 2010. "Community variations in social vulnerability to Cascadia-related tsunamis in the U.S. Pacific Northwest," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(2), pages 369-389, February.
    12. Ann-Margaret Esnard & Alka Sapat & Diana Mitsova, 2011. "An index of relative displacement risk to hurricanes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 833-859, November.
    13. Eno Amos & Uduak Akpan & Kehinde Ogunjobi, 2015. "Households’ perception and livelihood vulnerability to climate change in a coastal area of Akwa Ibom State, Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 887-908, August.
    14. Deressa, Temesgen & Hassan, Rashid M. & Ringler, Claudia, 2008. "Measuring Ethiopian farmers' vulnerability to climate change across regional states:," IFPRI discussion papers 806, International Food Policy Research Institute (IFPRI).
    15. Sara Lindersson & Elena Raffetti & Maria Rusca & Luigia Brandimarte & Johanna Mård & Giuliano Di Baldassarre, 2023. "The wider the gap between rich and poor the higher the flood mortality," Nature Sustainability, Nature, vol. 6(8), pages 995-1005, August.
    16. Gbetibouo, Glwadys Aymone & Ringler, Claudia, 2009. "Mapping South African farming sector vulnerability to climate change and variability: A subnational assessment," IFPRI discussion papers 885, International Food Policy Research Institute (IFPRI).
    17. Christian Geiß & Hannes Taubenböck, 2013. "Remote sensing contributing to assess earthquake risk: from a literature review towards a roadmap," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(1), pages 7-48, August.
    18. Ognjen Žurovec & Sabrija Čadro & Bishal Kumar Sitaula, 2017. "Quantitative Assessment of Vulnerability to Climate Change in Rural Municipalities of Bosnia and Herzegovina," Sustainability, MDPI, vol. 9(7), pages 1-18, July.
    19. Maria Luskova & Bohus Leitner, 2020. "Measuring Societal Vulnerability to Critical Infrastructure Failure Due to Extreme Weather Events," International Journal of Operations Management, Inovatus Services Ltd., vol. 1(1), pages 19-26, October.
    20. Ruby W. Grantham & Murray A. Rudd, 2017. "Household susceptibility to hydrological change in the Lower Mekong Basin," Natural Resources Forum, Blackwell Publishing, vol. 41(1), pages 3-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:48:y:2009:i:2:p:275-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.