IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v38y2006i1p247-258.html
   My bibliography  Save this article

Potential of High-Resolution Satellite Data in the Context of Vulnerability of Buildings

Author

Listed:
  • Marina Mueller
  • Karl Segl
  • Uta Heiden
  • Hermann Kaufmann

Abstract

High-resolution space-borne remote sensing data are investigated for their potential to extract relevant parameters for a vulnerability analysis of buildings in European countries. For an evaluation of large earthquake scenarios, the number of parameters in models for vulnerability is reduced to a minimum of relevant information such as the type of building (age, material, number of storeys) and the geological and spatial context. Building-related parameters can be derived from remote sensing data either directly (e.g. height) or indirectly based on the recognition of the urban structure type in which the buildings are located. With the potential of a fully- or semi-automatic inventory of the buildings and their parameters, high-resolution satellite data and techniques for their processing are a useful supporting tool for the assessment of vulnerability. Copyright Springer 2006

Suggested Citation

  • Marina Mueller & Karl Segl & Uta Heiden & Hermann Kaufmann, 2006. "Potential of High-Resolution Satellite Data in the Context of Vulnerability of Buildings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(1), pages 247-258, May.
  • Handle: RePEc:spr:nathaz:v:38:y:2006:i:1:p:247-258
    DOI: 10.1007/s11069-005-8637-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-005-8637-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-005-8637-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Wu & Zhiping Cheng & Wenzhong Shi & Zelang Miao & Chenchen Xu, 2014. "An object-based image analysis for building seismic vulnerability assessment using high-resolution remote sensing imagery," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 151-174, March.
    2. Daniele Ehrlich & Patrizia Tenerelli, 2013. "Optical satellite imagery for quantifying spatio-temporal dimension of physical exposure in disaster risk assessments," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1271-1289, September.
    3. Hernán Santa María & Matías A. Hube & Felipe Rivera & Catalina Yepes-Estrada & Jairo A. Valcárcel, 2017. "Development of national and local exposure models of residential structures in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 55-79, March.
    4. Annemarie Ebert & Norman Kerle & Alfred Stein, 2009. "Urban social vulnerability assessment with physical proxies and spatial metrics derived from air- and spaceborne imagery and GIS data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 275-294, February.
    5. Christian Geiß & Hannes Taubenböck, 2017. "One step back for a leap forward: toward operational measurements of elements at risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 1-6, March.
    6. Christian Geiß & Hannes Taubenböck, 2013. "Remote sensing contributing to assess earthquake risk: from a literature review towards a roadmap," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(1), pages 7-48, August.
    7. M. Mück & H. Taubenböck & J. Post & S. Wegscheider & G. Strunz & S. Sumaryono & F. Ismail, 2013. "Assessing building vulnerability to earthquake and tsunami hazard using remotely sensed data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(1), pages 97-114, August.
    8. Abdelheq Guettiche & Philippe Guéguen & Mostefa Mimoune, 2017. "Seismic vulnerability assessment using association rule learning: application to the city of Constantine, Algeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1223-1245, April.
    9. Wenhua Qi & Guiwu Su & Lei Sun & Fan Yang & Yang Wu, 2017. "“Internet+” approach to mapping exposure and seismic vulnerability of buildings in a context of rapid socioeconomic growth: a case study in Tangshan, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 107-139, March.
    10. Bruno Merz & Jana Friedrich & Markus Disse & Jochen Schwarz & Johann Goldammer & Jochen Wächter, 2006. "Possibilities and Limitations of Interdisciplinary, User-oriented Research: Experiences from the German Research Network Natural Disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(1), pages 3-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:38:y:2006:i:1:p:247-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.