IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v116y2023i2d10.1007_s11069-022-05783-0.html
   My bibliography  Save this article

Multicriteria seismic hazard and social vulnerability assessment in the Puerto Vallarta metropolitan area, Mexico: toward a comprehensive seismic risk analysis

Author

Listed:
  • Diana L. Jaimes

    (Universidad de Guadalajara)

  • Christian R. Escudero

    (Universidad de Guadalajara)

  • Karen L. Flores

    (Universidad de Guadalajara)

  • Araceli Zamora-Camacho

    (Universidad de Guadalajara)

Abstract

Destructive effects of an earthquake are enhanced when the population is unprepared. The experiences from the past highlighted the importance of proper planning based on adequate scientific data. The Puerto Vallarta metropolitan area (PVMA) comprises medium-sized, rapid-growing urban areas of independent administrative and political entities that maintain a constant, direct socioeconomic interrelation. The PVMA is located in a region with a complex tectonic setting that produces important seismic activity and is affected by beaches, rivers, and estuary systems that produce complex soils and subsoil conditions. Moreover, the PVMA constantly undergoes anthropogenic processes that modify the local geomorphology and produce improper urbanization. Therefore, the PVMA constitutes an ideal natural laboratory to implement and test techniques to estimate seismic hazard, social vulnerability, and seismic risk. These techniques can be later implemented in other similar cities around the world. To determine the seismic hazard, social vulnerability, and seismic risk of the PVMA, we implemented the multicriteria evaluation method within a graphical information system considering geomorphological (i.e., bedrock, soil, slope, curvature, flow accumulation), geophysical (peak ground acceleration, shear velocity, vibration frequency), and social information (population density, age, disabilities, health access, housing, and economic activity). We estimate the seismic hazard, social vulnerability, and seismic risk by considering three possible earthquakes. The results indicate a heterogeneous distribution of seismic risk with levels between moderate to high. Finally, a seismic risk microzonation in terms of the percentages of the seismic risk levels is proposed for the Puerto Vallarta metropolitan area.

Suggested Citation

  • Diana L. Jaimes & Christian R. Escudero & Karen L. Flores & Araceli Zamora-Camacho, 2023. "Multicriteria seismic hazard and social vulnerability assessment in the Puerto Vallarta metropolitan area, Mexico: toward a comprehensive seismic risk analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2671-2692, March.
  • Handle: RePEc:spr:nathaz:v:116:y:2023:i:2:d:10.1007_s11069-022-05783-0
    DOI: 10.1007/s11069-022-05783-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05783-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05783-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vladimir G. Kossobokov & Anastasia K. Nekrasova, 2018. "Earthquake hazard and risk assessment based on unified scaling law for earthquakes: Altai–Sayan Region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1435-1449, September.
    2. Indrajit Pal & Sankar Nath & Khemraj Shukla & Dilip Pal & Abhishek Raj & K. Thingbaijam & B. Bansal, 2008. "Earthquake hazard zonation of Sikkim Himalaya using a GIS platform," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(3), pages 333-377, June.
    3. Milad Moradi & Mahmoud Reza Delavar & Behzad Moshiri, 2017. "A GIS-based multi-criteria analysis model for earthquake vulnerability assessment using Choquet integral and game theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1377-1398, July.
    4. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    5. P. Anbazhagan & J. Vinod & T. Sitharam, 2009. "Probabilistic seismic hazard analysis for Bangalore," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 145-166, February.
    6. M. Hajibabaee & K. Amini-Hosseini & M. Ghayamghamian, 2014. "Earthquake risk assessment in urban fabrics based on physical, socioeconomic and response capacity parameters (a case study: Tehran city)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2229-2250, December.
    7. William Mohanty & M. Walling & Sankar Nath & Indrajit Pal, 2007. "First Order Seismic Microzonation of Delhi, India Using Geographic Information System (GIS)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(2), pages 245-260, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Bera & Bhabani Prasad Mukhopadhyay & Debasish Das, 2019. "Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 935-959, March.
    2. Karen L. Flores & Christian R. Escudero & Araceli Zamora-Camacho, 2021. "Multicriteria seismic hazard assessment in Puerto Vallarta metropolitan area, Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 253-275, January.
    3. Naveen James & T. Sitharam & G. Padmanabhan & C. Pillai, 2014. "Seismic microzonation of a nuclear power plant site with detailed geotechnical, geophysical and site effect studies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 419-462, March.
    4. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    5. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    6. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    7. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    8. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    9. Mónica García-Melón & Blanca Pérez-Gladish & Tomás Gómez-Navarro & Paz Mendez-Rodriguez, 2016. "Assessing mutual funds’ corporate social responsibility: a multistakeholder-AHP based methodology," Annals of Operations Research, Springer, vol. 244(2), pages 475-503, September.
    10. Luis Pérez-Domínguez & Luis Alberto Rodríguez-Picón & Alejandro Alvarado-Iniesta & David Luviano Cruz & Zeshui Xu, 2018. "MOORA under Pythagorean Fuzzy Set for Multiple Criteria Decision Making," Complexity, Hindawi, vol. 2018, pages 1-10, April.
    11. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    12. Kumar B, Pradeep, 2021. "Changing Objectives of Firms and Managerial Preferences: A Review of Models in Microeconomics," MPRA Paper 106967, University Library of Munich, Germany, revised 13 Mar 2021.
    13. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2018. "σ-µ efficiency analysis: A new methodology for evaluating units through composite indices," MPRA Paper 83569, University Library of Munich, Germany.
    14. Anirban Mukhopadhyay & Sugata Hazra & Debasish Mitra & C. Hutton & Abhra Chanda & Sandip Mukherjee, 2016. "Characterizing the multi-risk with respect to plausible natural hazards in the Balasore coast, Odisha, India: a multi-criteria analysis (MCA) appraisal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1495-1513, February.
    15. Chamoli, Sunil, 2015. "Hybrid FAHP (fuzzy analytical hierarchy process)-FTOPSIS (fuzzy technique for order preference by similarity of an ideal solution) approach for performance evaluation of the V down perforated baffle r," Energy, Elsevier, vol. 84(C), pages 432-442.
    16. H. S. C. Perera & W. K. R. Costa, 2008. "Analytic Hierarchy Process for Selection of Erp Software for Manufacturing Companies," Vision, , vol. 12(4), pages 1-11, October.
    17. G. La Scalia & F.P. Marra & J. Rühl & R. Sciortino & T. Caruso, 2016. "A fuzzy multi-criteria decision-making methodology to optimise olive agro-engineering processes based on geo-spatial technologies," International Journal of Management and Decision Making, Inderscience Enterprises Ltd, vol. 15(1), pages 1-15.
    18. Andersen, Steffen & Harrison, Glenn W. & Lau, Morten Igel & Rutström, Elisabet E., 2014. "Dual criteria decisions," Journal of Economic Psychology, Elsevier, vol. 41(C), pages 101-113.
      • Andersen, Steffen & Harrison, Glenn W. & Lau, Morten Igel & Rutström, Elisabet, 2009. "Dual Criteria Decisions," Working Papers 02-2009, Copenhagen Business School, Department of Economics.
    19. Mulliner, Emma & Smallbone, Kieran & Maliene, Vida, 2013. "An assessment of sustainable housing affordability using a multiple criteria decision making method," Omega, Elsevier, vol. 41(2), pages 270-279.
    20. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:116:y:2023:i:2:d:10.1007_s11069-022-05783-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.