IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v30y2003i2p187-207.html
   My bibliography  Save this article

Impact of Sea-level Rise and Storm Surges on a Coastal Community

Author

Listed:
  • K. Mcinnes
  • K. Walsh
  • G. Hubbert
  • T. Beer

Abstract

A technique to evaluate the risk of storm tides (the combination of a storm surge and tide) under present and enhanced greenhouse conditions has been applied to Cairns on the north-eastern Australian coast. The technique combines a statistical model for cyclone occurrence with a state-of-the-art storm surge inundation model and involves the random generation of a large number of storm tide simulations. The set of simulations constitutes a synthetic record of extreme sea-level events that can be analysed to produce storm tide return periods. The use of a dynamic storm surge model with overland flooding capability means that the spatial extent of flooding is also implicitly modelled. The technique has the advantage that it can readily be modified to include projected changes to cyclone behaviour due to the enhanced greenhouse effect. Sea-level heights in the current climate for return periods of 50, 100, 500 and 1000 years have been determined to be 2.0 m, 2.3 m, 3.0 m and 3.4 m respectively. In an enhanced greenhouse climate (around 2050), projected increases in cyclone intensity and mean sea-level see these heights increase to 2.4 m, 2.8 m, 3.8 m and 4.2 m respectively. The average area inundated by events with a return period greater than 100 years is found to more than double under enhanced greenhouse conditions. Copyright Kluwer Academic Publishers 2003

Suggested Citation

  • K. Mcinnes & K. Walsh & G. Hubbert & T. Beer, 2003. "Impact of Sea-level Rise and Storm Surges on a Coastal Community," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(2), pages 187-207, October.
  • Handle: RePEc:spr:nathaz:v:30:y:2003:i:2:p:187-207
    DOI: 10.1023/A:1026118417752
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1026118417752
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1026118417752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andre Zerger & Stephen Wealands, 2004. "Beyond Modelling: Linking Models with GIS for Flood Risk Management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(2), pages 191-208, October.
    2. Shama E. Haque, 2023. "The Effects of Climate Variability on Florida’s Major Water Resources," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    3. Sang Oh & Il-Ju Moon, 2013. "Typhoon and storm surge intensity changes in a warming climate around the Korean Peninsula," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(3), pages 1405-1429, April.
    4. Thomas Prime & Jennifer M Brown & Andrew J Plater, 2015. "Physical and Economic Impacts of Sea-Level Rise and Low Probability Flooding Events on Coastal Communities," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-28, February.
    5. Keqi Zhang & Yuepeng Li & Huiqing Liu & Hongzhou Xu & Jian Shen, 2013. "Comparison of three methods for estimating the sea level rise effect on storm surge flooding," Climatic Change, Springer, vol. 118(2), pages 487-500, May.
    6. Jun Wang & Wei Gao & Shiyuan Xu & Lizhong Yu, 2012. "Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China," Climatic Change, Springer, vol. 115(3), pages 537-558, December.
    7. Kathleen McInnes & Ron Hoeke & Kevin Walsh & Julian O’Grady & Graeme Hubbert, 2016. "Application of a synthetic cyclone method for assessment of tropical cyclone storm tides in Samoa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 425-444, January.
    8. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    9. Charls Antony & Sabique Langodan & Hari Prasad Dasari & Omar Knio & Ibrahim Hoteit, 2021. "Extreme water levels along the central Red Sea coast of Saudi Arabia: processes and frequency analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1797-1814, January.
    10. K. McInnes & I. Macadam & G. Hubbert & J. O’Grady, 2009. "A modelling approach for estimating the frequency of sea level extremes and the impact of climate change in southeast Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 115-137, October.
    11. Ming Li & Fan Zhang & Samuel Barnes & Xiaohong Wang, 2020. "Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2561-2588, September.
    12. Kuo Li & Guo Li, 2013. "Risk assessment on storm surges in the coastal area of Guangdong Province," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 1129-1139, September.
    13. Leo Dobes & Gabriela Scheufele & Jeff Bennett, 2015. "Post-cyclone emergency services: a cost–benefit analysis for Cairns, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 869-886, January.
    14. Lisa Kleinosky & Brent Yarnal & Ann Fisher, 2007. "Vulnerability of Hampton Roads, Virginia to Storm-Surge Flooding and Sea-Level Rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(1), pages 43-70, January.
    15. Yumei Ding & Hao Wei, 2017. "Modeling the impact of land reclamation on storm surges in Bohai Sea, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 559-573, January.
    16. Yan Fang & Jie Yin & Bihu Wu, 2016. "Flooding risk assessment of coastal tourist attractions affected by sea level rise and storm surge: a case study in Zhejiang Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 611-624, October.
    17. Kevin Walsh & Christopher J. White & Kathleen McInnes & John Holmes & Sandra Schuster & Harald Richter & Jason P. Evans & Alejandro Luca & Robert A. Warren, 2016. "Natural hazards in Australia: storms, wind and hail," Climatic Change, Springer, vol. 139(1), pages 55-67, November.
    18. Bin Pei & Weichiang Pang & Firat Testik & Nadarajah Ravichandran & Fangqian Liu, 2014. "Mapping joint hurricane wind and surge hazards for Charleston, South Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 375-403, November.
    19. Tengjiao Guo & Guosheng Li, 2020. "Study on methods to identify the impact factors of economic losses due to typhoon storm surge based on confirmatory factor analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 515-534, January.
    20. Geraldine Li, 2009. "Tropical cyclone risk perceptions in Darwin, Australia: a comparison of different residential groups," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(3), pages 365-382, March.
    21. Susmita Datta Peu & Arnob Das & Md. Sanowar Hossain & Md. Abdul Mannan Akanda & Md. Muzaffer Hosen Akanda & Mahbubur Rahman & Md. Naim Miah & Barun K. Das & Abu Reza Md. Towfiqul Islam & Mostafa M. Sa, 2023. "A Comprehensive Review on Recent Advancements in Absorption-Based Post Combustion Carbon Capture Technologies to Obtain a Sustainable Energy Sector with Clean Environment," Sustainability, MDPI, vol. 15(7), pages 1-33, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:30:y:2003:i:2:p:187-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.