IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i15d10.1007_s11069-024-06768-x.html
   My bibliography  Save this article

Modeling wave-surge effects on barrier-island breaching in St. Joseph Peninsula during Hurricane Michael

Author

Listed:
  • Mengdi Ma

    (FAMU-FSU College of Engineering, Florida State University)

  • Wenrui Huang

    (FAMU-FSU College of Engineering, Florida State University)

  • Linoj Vijayan

    (Louisiana State University)

  • Sungmoon Jung

    (FAMU-FSU College of Engineering, Florida State University)

Abstract

Better understanding the effects of hurricane waves and storm surges on barrier-island breaching is important for both scientific research and coastal hazard mitigations. In this study, the 2D non-hydrostatic Xbeach model has been applied to investigate interactions of hurricane wave, storm surge, and morphological processes in the case study of St. Joseph Peninsula during Category 5 Hurricane Michael. Model validations show a 2.45% average error and the 0.88 skill score between modeled and observed high water marks and bed elevations, respectively. Analysis of spatial distributions of currents and water levels indicates that a narrow area was overtopped at peak storm surge and wave. The gap was then quickly enlarged as the breaching area by wave-surge actions. By investigating foredune and peak dune along the central axis of breaching area, it shows that the foredune erosion on the ocean-side by wave-surge-current directly lead to the breach of the peak dune area in the barrier island. The Froude number shows a strong correlation with quick erosion of the barrier, indicating wave-surge supercritical flow is one of the major factors causing the barrier breaching. Results of cross sections of bed elevations and instantaneous surge-wave profiles at different storm surge stages reveal the evolution of the barrier-island breach. Results from this study provide valuable references for coastal hazard mitigation and resilience communities.

Suggested Citation

  • Mengdi Ma & Wenrui Huang & Linoj Vijayan & Sungmoon Jung, 2024. "Modeling wave-surge effects on barrier-island breaching in St. Joseph Peninsula during Hurricane Michael," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(15), pages 14199-14226, December.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:15:d:10.1007_s11069-024-06768-x
    DOI: 10.1007/s11069-024-06768-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06768-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06768-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tiago Garcia & Óscar Ferreira & Ana Matias & João Dias, 2010. "Overwash vulnerability assessment based on long-term washover evolution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(2), pages 225-244, August.
    2. Davina Passeri & Scott Hagen & Matthew Bilskie & Stephen Medeiros, 2015. "On the significance of incorporating shoreline changes for evaluating coastal hydrodynamics under sea level rise scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1599-1617, January.
    3. Davina L. Passeri & Matthew V. Bilskie & Nathaniel G. Plant & Joseph W. Long & Scott C. Hagen, 2018. "Dynamic modeling of barrier island response to hurricane storm surge under future sea level rise," Climatic Change, Springer, vol. 149(3), pages 413-425, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changsheng Chen & Zhaolin Lin & Robert C. Beardsley & Tom Shyka & Yu Zhang & Qichun Xu & Jianhua Qi & Huichan Lin & Danya Xu, 2021. "Impacts of sea level rise on future storm-induced coastal inundations over massachusetts coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 375-399, March.
    2. Annette Grilli & Malcolm L. Spaulding & Bryan A. Oakley & Chris Damon, 2017. "Mapping the coastal risk for the next century, including sea level rise and changes in the coastline: application to Charlestown RI, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 389-414, August.
    3. Reza Marsooli & Ning Lin, 2020. "Impacts of climate change on hurricane flood hazards in Jamaica Bay, New York," Climatic Change, Springer, vol. 163(4), pages 2153-2171, December.
    4. Laura Río & F. Gracia, 2013. "Error determination in the photogrammetric assessment of shoreline changes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 2385-2397, February.
    5. Parton, Lee C. & Dundas, Steven J., 2020. "Fall in the sea, eventually? A green paradox in climate adaptation for coastal housing markets," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    6. Nick Taylor & Jennifer Irish & Ikpoto Udoh & Matthew Bilskie & Scott Hagen, 2015. "Development and uncertainty quantification of hurricane surge response functions for hazard assessment in coastal bays," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1103-1123, June.
    7. Khojasteh, Danial & Lewis, Matthew & Tavakoli, Sasan & Farzadkhoo, Maryam & Felder, Stefan & Iglesias, Gregorio & Glamore, William, 2022. "Sea level rise will change estuarine tidal energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:15:d:10.1007_s11069-024-06768-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.