IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i14d10.1007_s11069-024-06733-8.html
   My bibliography  Save this article

Land subsidence and groundwater storage change assessment using InSAR and GRACE in the arid environment of Saudi Arabia

Author

Listed:
  • Esubalew Adem

    (King Abdulaziz University
    Arba Minch University)

  • Roman Shults

    (King Fahd University of Petroleum and Minerals)

  • Muhammad Ukasha

    (King Abdullah University of Science and Technology)

  • Amro Elfeki

    (King Abdulaziz University
    Mansoura University)

  • Faisal Alqahtani

    (King Abdulaziz University
    King Abdulaziz University)

  • Mohamed Elhag

    (King Abdulaziz University
    Chinese Academy of Science
    CI-HEAM/Mediterranean Agronomic Institute of Chania
    German University of Technology in Oman)

Abstract

Najran region in Saudi Arabia has been affected by groundwater storage decline and consequent land subsidence for a long period of time. In this study, we utilized Sentinel-1 data for ground surface mapping, to generate interferograms and coherence maps using the Looking into Continents from Space with Synthetic Aperture Radar (LiCSAR) processor to estimate land subsidence rates from 2016 to 2020. Therefore, LiCSBAS-InSAR technique allowed for the identification and study of the changes in surface deformation over a selected period. We validated the observed displacement field by processing the Global Navigation Satellite System (GNSS) station’s time series, which spanned from 2017 to 2019. In addition, we also analyzed Gravity Recovery and Climate Experiment (GRACE)-based Terrestrial Water Storage Anomalies observations to estimate groundwater depletion trends in the region. The result of the study indicates the occurrence of subsidence along the valley, as observed using the Small Baseline Subset InSAR technique. The average annual subsidence rate was observed ranging from 1.1 to 5.1 mm per year between 2016 and 2020. Correspondingly, the GRACE analysis showed that groundwater storage depletes at ~ 11.2 mm per year. Moreover, this finding provides valuable information about the excessive use of groundwater for growing vegetation. NDVI analysis has shown a considerable increasing vegetation area change of approximately 34.5 km2 between 2013 and 2020 with a 0.2 threshold. Overall, the analysis reveals that the time series obtained from InSAR, GRACE, GNSS, and well data exhibits a consistent downward trend over time.

Suggested Citation

  • Esubalew Adem & Roman Shults & Muhammad Ukasha & Amro Elfeki & Faisal Alqahtani & Mohamed Elhag, 2024. "Land subsidence and groundwater storage change assessment using InSAR and GRACE in the arid environment of Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 13137-13159, November.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:14:d:10.1007_s11069-024-06733-8
    DOI: 10.1007/s11069-024-06733-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06733-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06733-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mabkhoot Alsaiari & Basil Onyekayahweh Nwafor & Maman Hermana & Al Marzouki Hassan H. M. & Mohammed Irfan, 2023. "Understanding the Mechanisms of Earth Fissuring for Hazard Mitigation in Najran, Saudi Arabia," Sustainability, MDPI, vol. 15(7), pages 1-22, March.
    2. Ahmed Youssef & Abdullah Sabtan & Norbert Maerz & Yasser Zabramawi, 2014. "Earth Fissures in Wadi Najran, Kingdom of Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 2013-2027, April.
    3. Jarbou Bahrawi & Hatem Ewea & Ahmed Kamis & Mohamed Elhag, 2020. "Potential flood risk due to urbanization expansion in arid environments, Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 795-809, October.
    4. Matthew Rodell & Isabella Velicogna & James S. Famiglietti, 2009. "Satellite-based estimates of groundwater depletion in India," Nature, Nature, vol. 460(7258), pages 999-1002, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meena, Raj Pal & Karnam, Venkatesh & R, Sendhil & Rinki, & Sharma, R.K. & Tripathi, S.C. & Singh, Gyanendra Pratap, 2019. "Identification of water use efficient wheat genotypes with high yield for regions of depleting water resources in India," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    2. Yusuke Kuwayama, 2019. "Policy Note: "Opportunities and Challenges of Using Satellite Data to Inform Water Policy"," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-9, July.
    3. Bahi, Dhilanveer Teja Singh & Paavola, Jouni, 2023. "Liquid petroleum gas access and consumption expenditure: measuring energy poverty through wellbeing and gender equality in India," LSE Research Online Documents on Economics 120564, London School of Economics and Political Science, LSE Library.
    4. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2021. "Reflections on farmers’ social networks: a means for sustainable agricultural development?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2973-3008, March.
    5. Jayanta Das & A. T. M. Sakiur Rahman & Tapash Mandal & Piu Saha, 2021. "Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7289-7309, May.
    6. Rajat Agarwal & P. K. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    7. Abdulaziz Alqahtani & Tom Sale & Michael J. Ronayne & Courtney Hemenway, 2021. "Demonstration of Sustainable Development of Groundwater through Aquifer Storage and Recovery (ASR)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 429-445, January.
    8. Dorcas Idowu & Wendy Zhou, 2023. "Global Megacities and Frequent Floods: Correlation between Urban Expansion Patterns and Urban Flood Hazards," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    9. Pennan Chinnasamy & Govindasamy Agoramoorthy, 2015. "Groundwater Storage and Depletion Trends in Tamil Nadu State, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2139-2152, May.
    10. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    12. Awada, Hassan & Di Prima, Simone & Sirca, Costantino & Giadrossich, Filippo & Marras, Serena & Spano, Donatella & Pirastru, Mario, 2022. "A remote sensing and modeling integrated approach for constructing continuous time series of daily actual evapotranspiration," Agricultural Water Management, Elsevier, vol. 260(C).
    13. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," IWMI Books, Reports H046807, International Water Management Institute.
    14. Scott Moore & Joshua Fisher, 2012. "Challenges and Opportunities in GRACE-Based Groundwater Storage Assessment and Management: An Example from Yemen," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1425-1453, April.
    15. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    16. Shenggen Fan, 2016. "A Nexus Approach to Food, Water, and Energy: Sustainably Meeting Asia’s Future Food and Nutrition Requirements," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 55(4), pages 297-311.
    17. Mousumi Chowdhury & Prabir Kumar Paul, 2020. "Quantification of groundwater resource of Kandi subdivision of Murshidabad district, West Bengal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5849-5871, August.
    18. Pradhan, Deepa & Ranjan, Ram, 2016. "Achieving Sustainability and Development through Collective Action? An Empirical Analysis of the Impact of the Bore Pool Sharing Program on Farm Incomes and Crop Choices," World Development, Elsevier, vol. 88(C), pages 152-174.
    19. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India," Energy, Elsevier, vol. 174(C), pages 269-279.
    20. Amarasinghe, Upali A. & Smakhtin, Vladimir U. & Sharma, Bharat R. & Eriyagama, Nishadi, 2010. "Bailout with white revolution or sink deeper?: groundwater depletion and impacts in the Moga District of Punjab, India," IWMI Research Reports 108672, International Water Management Institute.

    More about this item

    Keywords

    LiCSBAS; InSAR; GRACE; GNSS; Subsidence; NDVI;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:14:d:10.1007_s11069-024-06733-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.