IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v22y2020i6d10.1007_s10668-019-00454-w.html
   My bibliography  Save this article

Quantification of groundwater resource of Kandi subdivision of Murshidabad district, West Bengal

Author

Listed:
  • Mousumi Chowdhury

    (Indian Institute of Engineering Science and Technology, Shibpur)

  • Prabir Kumar Paul

    (Indian Institute of Engineering Science and Technology, Shibpur)

Abstract

Groundwater is an open access resource of the country. Groundwater plays a major role in agriculture, accounting for 94.5% of total water requirement in all minor irrigation systems in India (Minor Irrigation Census 2017). Trends today are to continuously assess this resource, so that the necessary management systems could be developed before the time when groundwater condition becomes critical. In this work, an attempt has been made to quantify the groundwater resource of Kandi subdivision of Murshidabad district of West Bengal. The paper mooted herein has attempted to identify the recharge of the aquifer from rainfall and other sources using a water table fluctuation method and CN method. The work has tried to identify the nature of the aquifer and the volumetric assessment of the aquifer using borehole lithologs. The gross draft of the study area has been assessed as per GEC norms. The paper has developed a methodology to identify the state of development as per GEC norms. The stage of development of the study area indicates that scientific management of the water resource should be undertaken before the area becomes critical.

Suggested Citation

  • Mousumi Chowdhury & Prabir Kumar Paul, 2020. "Quantification of groundwater resource of Kandi subdivision of Murshidabad district, West Bengal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5849-5871, August.
  • Handle: RePEc:spr:endesu:v:22:y:2020:i:6:d:10.1007_s10668-019-00454-w
    DOI: 10.1007/s10668-019-00454-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-019-00454-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-019-00454-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oluseyi O. Adeleke & Victor Makinde & Ayobami O. Eruola & Oluwaseun F. Dada & Akintayo O. Ojo & Taiwo J. Aluko, 2015. "Estimation of Groundwater Recharges in Odeda Local Government Area, Ogun State, Nigeria using Empirical Formulae," Challenges, MDPI, vol. 6(2), pages 1-11, November.
    2. Matthew Rodell & Isabella Velicogna & James S. Famiglietti, 2009. "Satellite-based estimates of groundwater depletion in India," Nature, Nature, vol. 460(7258), pages 999-1002, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahenthiran Sathiyamoorthy & Uma Shankar Masilamani & Aaron Anil Chadee & Sreelakhmi Devi Golla & Mohammed Aldagheiri & Parveen Sihag & Upaka Rathnayake & Jyotendra Patidar & Shivansh Shukla & Aryan K, 2023. "Sustainability of Groundwater Potential Zones in Coastal Areas of Cuddalore District, Tamil Nadu, South India Using Integrated Approach of Remote Sensing, GIS and AHP Techniques," Sustainability, MDPI, vol. 15(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahenthiran Sathiyamoorthy & Uma Shankar Masilamani & Aaron Anil Chadee & Sreelakhmi Devi Golla & Mohammed Aldagheiri & Parveen Sihag & Upaka Rathnayake & Jyotendra Patidar & Shivansh Shukla & Aryan K, 2023. "Sustainability of Groundwater Potential Zones in Coastal Areas of Cuddalore District, Tamil Nadu, South India Using Integrated Approach of Remote Sensing, GIS and AHP Techniques," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    2. Meena, Raj Pal & Karnam, Venkatesh & R, Sendhil & Rinki, & Sharma, R.K. & Tripathi, S.C. & Singh, Gyanendra Pratap, 2019. "Identification of water use efficient wheat genotypes with high yield for regions of depleting water resources in India," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    3. Valbuena, Diego & Tui, Sabine Homann-Kee & Erenstein, Olaf & Teufel, Nils & Duncan, Alan & Abdoulaye, Tahirou & Swain, Braja & Mekonnen, Kindu & Germaine, Ibro & Gérard, Bruno, 2015. "Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia," Agricultural Systems, Elsevier, vol. 134(C), pages 107-118.
    4. Peder Hjorth & Kaveh Madani, 2023. "Adaptive Water Management: On the Need for Using the Post-WWII Science in Water Governance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2247-2270, May.
    5. Fishman, Ram & Giné, Xavier & Jacoby, Hanan G., 2023. "Efficient irrigation and water conservation: Evidence from South India," Journal of Development Economics, Elsevier, vol. 162(C).
    6. Chanda, Areendam & Kabiraj, Sujana, 2020. "Shedding light on regional growth and convergence in India," World Development, Elsevier, vol. 133(C).
    7. Yusuke Kuwayama, 2019. "Policy Note: "Opportunities and Challenges of Using Satellite Data to Inform Water Policy"," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-9, July.
    8. Bahi, Dhilanveer Teja Singh & Paavola, Jouni, 2023. "Liquid petroleum gas access and consumption expenditure: measuring energy poverty through wellbeing and gender equality in India," LSE Research Online Documents on Economics 120564, London School of Economics and Political Science, LSE Library.
    9. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2021. "Reflections on farmers’ social networks: a means for sustainable agricultural development?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2973-3008, March.
    10. Pang-Wei Liu & James S. Famiglietti & Adam J. Purdy & Kyra H. Adams & Avery L. McEvoy & John T. Reager & Rajat Bindlish & David N. Wiese & Cédric H. David & Matthew Rodell, 2022. "Groundwater depletion in California’s Central Valley accelerates during megadrought," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Shah, M., 2018. "Reforming India’s water governance to meet 21st century challenges: practical pathways to realizing the vision of the Mihir Shah Committee," IWMI Working Papers H049192, International Water Management Institute.
    12. Nicostrato Perez & Vartika Singh & Claudia Ringler & Hua Xie & Tingju Zhu & Edwin H. Sutanudjaja & Karen G. Villholth, 2024. "Ending groundwater overdraft without affecting food security," Nature Sustainability, Nature, vol. 7(8), pages 1007-1017, August.
    13. Mohammed Sanusi Shiru & Shamsuddin Shahid & Inhwan Park, 2021. "Projection of Water Availability and Sustainability in Nigeria Due to Climate Change," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    14. Jayanta Das & A. T. M. Sakiur Rahman & Tapash Mandal & Piu Saha, 2021. "Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7289-7309, May.
    15. Rajat Agarwal & P. K. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    16. Bell, Andrew & Zhu, Tingju & Xie, Hua & Ringler, Claudia, 2014. "Climate–water interactions—Challenges for improved representation in integrated assessment models," Energy Economics, Elsevier, vol. 46(C), pages 510-521.
    17. Puja Chowdhury & Bhabani Prasad Mukhopadhyay & Siperna Nayak & Amit Bera, 2022. "Hydro-chemical characterization of groundwater and evaluation of health risk assessment for fluoride contamination areas in the eastern blocks of Purulia district, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 11320-11347, September.
    18. Abdulaziz Alqahtani & Tom Sale & Michael J. Ronayne & Courtney Hemenway, 2021. "Demonstration of Sustainable Development of Groundwater through Aquifer Storage and Recovery (ASR)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 429-445, January.
    19. Prathapar, S. & Dhar, S. & Rao, G. Tamma & Maheshwari, B., 2015. "Performance and impacts of managed aquifer recharge interventions for agricultural water security: A framework for evaluation," Agricultural Water Management, Elsevier, vol. 159(C), pages 165-175.
    20. Ning Nie & Wanchang Zhang & Zhijie Zhang & Huadong Guo & Natarajan Ishwaran, 2016. "Reconstructed Terrestrial Water Storage Change (ΔTWS) from 1948 to 2012 over the Amazon Basin with the Latest GRACE and GLDAS Products," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 279-294, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:22:y:2020:i:6:d:10.1007_s10668-019-00454-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.