Author
Listed:
- Kai Sun
(Chinese Academy of Sciences
University of Chinese Academy of Sciences
Chinese Academy of Sciences)
- Zhiqing Li
(Chinese Academy of Sciences
University of Chinese Academy of Sciences
Chinese Academy of Sciences)
- Shuangjiao Wang
(Chinese Academy of Sciences
University of Chinese Academy of Sciences
Chinese Academy of Sciences)
- Ruilin Hu
(Chinese Academy of Sciences
University of Chinese Academy of Sciences
Chinese Academy of Sciences)
Abstract
Recent advancements have seen a pervasive application of machine learning methodologies in assessing the susceptibility of geological hazards. A pivotal element influencing the accuracy of model predictions resides in the prudent selection of model parameters within machine learning frameworks. The objective of this study is to develop a robust landslide susceptibility assessment model by refining the support vector machine (SVM) model through the employment of the Bayesian algorithm for hyperparameter optimization. The southern part of the Qinghai-Tibet Plateau, focusing on major highways, is selected as the study area. Nine influencing factors, namely the elevation, slope, aspect, profile curvature, lithology, topographic wetness index, normalized difference vegetation index, distance to faults, and distance to rivers, are selected as the conditioning variables instrumental in evaluating the likelihood of collapse occurrences. Secondly, data from field surveys involving 351 landslides and randomly generated non-landslide data are utilized in a balanced 1:1 ratio to construct the training and testing datasets. Next, the cross-validation loss rate of the SVM model is selected as the objective function, and the Bayesian algorithm is used to optimize the BoxConstraint and KernelScale parameters of the SVM model, resulting in a Bayesian optimization-based SVM model. The results show that, within a five-fold cross-validation framework, the model yields 99.15% and 96.32% accuracy for the training and testing datasets, respectively. Concurrently, the area under the receiver operating characteristic curve values are recorded at 99.76% and 98.67% for the respective datasets, highlighting a notable level of predictive proficiency. Furthermore, factor importance ranking reveals lithology and elevation as the most influential, with partial dependence plots identifying high susceptibility areas between elevations of 2916 and 3954 m under soft lithology conditions. A collapse susceptibility map encompassing the entire study area is encompassing, categorizing the study area into extremely high (7.79%), high (13.38%), moderate (29.99%), and low (48.84%) susceptibility zones.
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06665-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.