IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13978-d1244128.html
   My bibliography  Save this article

Evaluation of Geological Hazard Risk in Yiliang County, Yunnan Province, Using Combined Assignment Method

Author

Listed:
  • Shaohan Zhang

    (Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
    International Joint Laboratory of Critical Mineral Resource, Yunnan University, Kunming 650500, China)

  • Shucheng Tan

    (Laboratory of Critical Mineral Resource, Yunnan International Joint, School of Earth Science, Yunnan University, Kunming 650500, China)

  • Hui Geng

    (Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
    International Joint Laboratory of Critical Mineral Resource, Yunnan University, Kunming 650500, China)

  • Ronwei Li

    (Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
    International Joint Laboratory of Critical Mineral Resource, Yunnan University, Kunming 650500, China)

  • Yongqi Sun

    (Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China)

  • Jun Li

    (Yunnan Architectural Engineering Design Company Limited, Kunming 650501, China)

Abstract

Geological disasters are prevalent during urbanization in the mountainous areas of southwest China due to the complex geographic and fragile geologic conditions. This paper relies on the ArcGIS platform as the model operation carrier and takes Yiliang County of Yunnan Province as the research area. Nine evaluation factors such as slope and elevation were selected, and the risk assessment of geological disasters in Yiliang County is carried out by using the combination weighting method. The results show that: (1) the extremely high-risk areas and high-risk areas are distributed in the central, western, and northeastern parts of Yiliang County, of which 164 disaster points are distributed in the area, accounting for 72.56% of the total disaster points; (2) the elevation, human engineering activities, vegetation coverage, and distance from the river are the four main factors affecting the development of geological disasters in the area; (3) the proportions of extremely high-risk areas, high-risk areas, medium-risk areas, and low-risk areas in the total area of the county were 8.08%, 19.61%, 30.59%, and 41.72%, respectively; (4) the verification of the evaluation results by the receiver operating characteristic (ROC) curve shows that the evaluation accuracy is 80%, and the zoning results are consistent with the spatial and temporal distribution of historical disaster points. The combined weighting method can effectively evaluate the risk of geological disasters in Yiliang County, and the results can be used as a scientific reference for local government departments to carry out relevant work.

Suggested Citation

  • Shaohan Zhang & Shucheng Tan & Hui Geng & Ronwei Li & Yongqi Sun & Jun Li, 2023. "Evaluation of Geological Hazard Risk in Yiliang County, Yunnan Province, Using Combined Assignment Method," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13978-:d:1244128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13978/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13978/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberta Plangg Riegel & Darlan Daniel Alves & Bruna Caroline Schmidt & Guilherme Garcia Oliveira & Claus Haetinger & Daniela Montanari Migliavacca Osório & Marco Antônio Siqueira Rodrigues & Daniela M, 2020. "Assessment of susceptibility to landslides through geographic information systems and the logistic regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 497-511, August.
    2. Shaohan Zhang & Shucheng Tan & Lifeng Liu & Duanyu Ding & Yongqi Sun & Jun Li, 2023. "Slope Rock and Soil Mass Movement Geological Hazards Susceptibility Evaluation Using Information Quantity, Deterministic Coefficient, and Logistic Regression Models and Their Comparison at Xuanwei, Ch," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    3. Krishna Devkota & Amar Regmi & Hamid Pourghasemi & Kohki Yoshida & Biswajeet Pradhan & In Ryu & Megh Dhital & Omar Althuwaynee, 2013. "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 135-165, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Zhang & Lijun Jiang & Wei Deng & Zhile Shu & Meiben Gao & Guichuan Liu, 2024. "Risk Assessment of Geological Hazards in the Alpine Gorge Region and Its Influencing Factors: A Case Study of Jiulong County, China," Sustainability, MDPI, vol. 16(5), pages 1-16, February.
    2. Ruixia Ma & Yan Lyu & Tianbao Chen & Qian Zhang, 2023. "Preliminary Risk Assessment of Geological Disasters in Qinglong Gorge Scenic Area of Taihang Mountain with GIS Based on Analytic Hierarchy Process and Logistic Regression Model," Sustainability, MDPI, vol. 15(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaohan Zhang & Shucheng Tan & Lifeng Liu & Duanyu Ding & Yongqi Sun & Jun Li, 2023. "Slope Rock and Soil Mass Movement Geological Hazards Susceptibility Evaluation Using Information Quantity, Deterministic Coefficient, and Logistic Regression Models and Their Comparison at Xuanwei, Ch," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    2. Eseosa Halima Ighile & Hiroaki Shirakawa & Hiroki Tanikawa, 2022. "Application of GIS and Machine Learning to Predict Flood Areas in Nigeria," Sustainability, MDPI, vol. 14(9), pages 1-33, April.
    3. R. O. E. Ulakpa & V.U.D. Okwu & K. E. Chukwu & M. O. Eyankware, 2020. "Landslide Susceptibility Modelling In Selected States Across Se. Nigeria," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 4(1), pages 23-27, March.
    4. Xinfu Xing & Chenglong Wu & Jinhui Li & Xueyou Li & Limin Zhang & Rongjie He, 2021. "Susceptibility assessment for rainfall-induced landslides using a revised logistic regression method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 97-117, March.
    5. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    6. Sina Paryani & Aminreza Neshat & Saman Javadi & Biswajeet Pradhan, 2020. "Comparative performance of new hybrid ANFIS models in landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1961-1988, September.
    7. Tahir Ali Akbar & Siddique Ullah & Waheed Ullah & Rafi Ullah & Raja Umer Sajjad & Abdullah Mohamed & Alamgir Khalil & Muhammad Faisal Javed & Anwarud Din, 2022. "Development and Application of Models for Landslide Hazards in Northern Pakistan," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    8. Bayes Ahmed, 2015. "Landslide susceptibility modelling applying user-defined weighting and data-driven statistical techniques in Cox’s Bazar Municipality, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1707-1737, December.
    9. Sandeep Kumar & Vikram Gupta, 2021. "Evaluation of spatial probability of landslides using bivariate and multivariate approaches in the Goriganga valley, Kumaun Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2461-2488, December.
    10. Hailang He & Weiwei Wang & Zhengxing Wang & Shu Li & Jianguo Chen, 2024. "Enhancing Seismic Landslide Susceptibility Analysis for Sustainable Disaster Risk Management through Machine Learning," Sustainability, MDPI, vol. 16(9), pages 1-24, May.
    11. Di Wang & Mengmeng Hao & Shuai Chen & Ze Meng & Dong Jiang & Fangyu Ding, 2021. "Assessment of landslide susceptibility and risk factors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3045-3059, September.
    12. Jean Baptiste Nsengiyumva & Geping Luo & Egide Hakorimana & Richard Mind'je & Aboubakar Gasirabo & Valentine Mukanyandwi, 2019. "Comparative Analysis of Deterministic and Semiquantitative Approaches for Shallow Landslide Risk Modeling in Rwanda," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2576-2595, November.
    13. Yigen Qin & Genlan Yang & Kunpeng Lu & Qianzheng Sun & Jin Xie & Yunwu Wu, 2021. "Performance Evaluation of Five GIS-Based Models for Landslide Susceptibility Prediction and Mapping: A Case Study of Kaiyang County, China," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    14. Idris Bello Yamusa & Mohd Suhaili Ismail & Abdulwaheed Tella, 2022. "Highway Proneness Appraisal to Landslides along Taiping to Ipoh Segment Malaysia, Using MCDM and GIS Techniques," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    15. Kai Sun & Zhiqing Li & Shuangjiao Wang & Ruilin Hu, 2024. "A support vector machine model of landslide susceptibility mapping based on hyperparameter optimization using the Bayesian algorithm: a case study of the highways in the southern Qinghai–Tibet Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 11377-11398, September.
    16. Gökhan Demir, 2018. "Landslide susceptibility mapping by using statistical analysis in the North Anatolian Fault Zone (NAFZ) on the northern part of Suşehri Town, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 133-154, May.
    17. Javeria Saleem & Sheikh Saeed Ahmad & Amna Butt, 2020. "Hazard risk assessment of landslide-prone sub-Himalayan region by employing geospatial modeling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1497-1514, July.
    18. Prafull Singh & Ankit Sharma & Ujjwal Sur & Praveen Kumar Rai, 2021. "Comparative landslide susceptibility assessment using statistical information value and index of entropy model in Bhanupali-Beri region, Himachal Pradesh, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5233-5250, April.
    19. Yimin Li & Xuanlun Deng & Peikun Ji & Yiming Yang & Wenxue Jiang & Zhifang Zhao, 2022. "Evaluation of Landslide Susceptibility Based on CF-SVM in Nujiang Prefecture," IJERPH, MDPI, vol. 19(21), pages 1-24, October.
    20. Seyed Vahid Razavi-Termeh & Abolghasem Sadeghi-Niaraki & Farbod Farhangi & Soo-Mi Choi, 2021. "COVID-19 Risk Mapping with Considering Socio-Economic Criteria Using Machine Learning Algorithms," IJERPH, MDPI, vol. 18(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13978-:d:1244128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.