IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i11d10.1007_s11069-024-06588-z.html
   My bibliography  Save this article

Trends and amount changes of temperature and precipitation under future projections in high–low groups and intra-period for the Eastern Black Sea, the Wettest Basin in Türkiye

Author

Listed:
  • Sinan Nacar

    (Tokat Gaziosmanpaşa University)

  • Murat Şan

    (Gümüşhane University)

  • Murat Kankal

    (Bursa Uludağ University)

  • Umut Okkan

    (Balıkesir University)

Abstract

This study investigates the possible effects of climate change on temperature and precipitation variables in the Eastern Black Sea Basin, Türkiye’s wettest and flood-prone region. The outputs of three GCMs under historical, RCP4.5, and RCP8.5 scenarios were downscaled to regional scale using the multivariate adaptive regression splines method. The future monthly temperature and precipitation for 12 stations in the basin were projected for three periods: the 2030s (2021–2050), 2060s (2051–2080), and 2090s (2081–2100). In addition to relative changes, high and low groups and intra-period trends were analyzed for the first time using innovative methods. For the pessimistic scenario, an increase of 3.5 °C in the interior and 3.0 °C in the coastal areas of the basin is projected. For the optimistic scenario, these values are expected to be 2.5 and 2.0 °C, respectively. A decrease in precipitation is projected for the interior region, and a significant increase is expected for the eastern and coastal areas of the basin, especially in spring. This result indicates that floods will occur frequently coastal areas of the basin in the coming periods. Also, although the monotonic trends of temperatures during periods are higher than precipitation in interior regions, these regions may have more uncertainty as their trends are in different directions of low and high groups of different scenarios and GCMs and contribute to all trends, especially precipitation.

Suggested Citation

  • Sinan Nacar & Murat Şan & Murat Kankal & Umut Okkan, 2024. "Trends and amount changes of temperature and precipitation under future projections in high–low groups and intra-period for the Eastern Black Sea, the Wettest Basin in Türkiye," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 9833-9866, September.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:11:d:10.1007_s11069-024-06588-z
    DOI: 10.1007/s11069-024-06588-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06588-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06588-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shakti Suman & S. Z. Khan & S. K. Das & S. K. Chand, 2016. "Slope stability analysis using artificial intelligence techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 727-748, November.
    2. Melitta Fiebig-Wittmaack & Orlando Astudillo & Elaine Wheaton & Virginia Wittrock & César Perez & Antonio Ibacache, 2012. "Climatic trends and impact of climate change on agriculture in an arid Andean valley," Climatic Change, Springer, vol. 111(3), pages 819-833, April.
    3. İsmail Dabanlı & Zekai Şen & Mehmet Öner Yeleğen & Eyüp Şişman & Bülent Selek & Yavuz Selim Güçlü, 2016. "Trend Assessment by the Innovative-Şen Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5193-5203, November.
    4. Nigel Arnell & Simon Gosling, 2016. "The impacts of climate change on river flood risk at the global scale," Climatic Change, Springer, vol. 134(3), pages 387-401, February.
    5. Allison Thomson & Katherine Calvin & Steven Smith & G. Kyle & April Volke & Pralit Patel & Sabrina Delgado-Arias & Ben Bond-Lamberty & Marshall Wise & Leon Clarke & James Edmonds, 2011. "RCP4.5: a pathway for stabilization of radiative forcing by 2100," Climatic Change, Springer, vol. 109(1), pages 77-94, November.
    6. I. G. Pechlivanidis & B. Arheimer & C. Donnelly & Y. Hundecha & S. Huang & V. Aich & L. Samaniego & S. Eisner & P. Shi, 2017. "Analysis of hydrological extremes at different hydro-climatic regimes under present and future conditions," Climatic Change, Springer, vol. 141(3), pages 467-481, April.
    7. Umut Okkan & Umut Kirdemir, 2018. "Investigation of the Behavior of an Agricultural-Operated Dam Reservoir Under RCP Scenarios of AR5-IPCC," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2847-2866, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohor, Guilherme Samprogna & Mendiondo, Eduardo Mario, 2017. "Economic indicators of hydrologic drought insurance under water demand and climate change scenarios in a Brazilian context," Ecological Economics, Elsevier, vol. 140(C), pages 66-78.
    2. Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Post-Print hal-02127724, HAL.
    3. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    4. Michels-Brito, Adriane & Rodriguez, Daniel Andrés & Cruz Junior, Wellington Luís & Nildo de Souza Vianna, João, 2021. "The climate change potential effects on the run-of-river plant and the environmental and economic dimensions of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    6. Bushra Khalid & Bueh Cholaw & Débora Souza Alvim & Shumaila Javeed & Junaid Aziz Khan & Muhammad Asif Javed & Azmat Hayat Khan, 2018. "Riverine flood assessment in Jhang district in connection with ENSO and summer monsoon rainfall over Upper Indus Basin for 2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 971-993, June.
    7. Laura Devitt & Jeffrey Neal & Gemma Coxon & James Savage & Thorsten Wagener, 2023. "Flood hazard potential reveals global floodplain settlement patterns," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. World Bank, 2023. "Somalia Climate Risk Review," World Bank Publications - Reports 40076, The World Bank Group.
    9. Indira Pokhrel & Ajay Kalra & Md Mafuzur Rahaman & Ranjeet Thakali, 2020. "Forecasting of Future Flooding and Risk Assessment under CMIP6 Climate Projection in Neuse River, North Carolina," Forecasting, MDPI, vol. 2(3), pages 1-23, August.
    10. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
    11. Osberghaus, Daniel & Reif, Christiane, 2021. "How do different compensation schemes and loss experience affect insurance decisions? Experimental evidence from two independent and heterogeneous samples," Ecological Economics, Elsevier, vol. 187(C).
    12. Diop, Bassirou & Blanchard, Fabian & Sanz, Nicolas, 2018. "Mangrove increases resiliency of the French Guiana shrimp fishery facing global warming," Ecological Modelling, Elsevier, vol. 387(C), pages 27-37.
    13. Favero, Alice & Mendelsohn, Robert & Sohngen, Brent, 2016. "Carbon Storage and Bioenergy: Using Forests for Climate Mitigation," MITP: Mitigation, Innovation and Transformation Pathways 232215, Fondazione Eni Enrico Mattei (FEEM).
    14. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    15. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    16. Wise, Marshall & Hodson, Elke L. & Mignone, Bryan K. & Clarke, Leon & Waldhoff, Stephanie & Luckow, Patrick, 2015. "An approach to computing marginal land use change carbon intensities for bioenergy in policy applications," Energy Economics, Elsevier, vol. 50(C), pages 337-347.
    17. Schmitz, Christoph & van Meijl, Hans & Kyle, Page & Fujimori, Shinichiro & Gurgel, Angelo & Havlik, Petr & d'Croz, Daniel Mason & Popp, Alexander & Sands, Ron & Tabeau, Andrzej & van der Mensbrugghe, , 2013. "An agro-economic model comparison of cropland change until 2050," Conference papers 332351, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Ruth Abegaz & Fei Wang & Jun Xu, 2024. "History, causes, and trend of floods in the U.S.: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(15), pages 13715-13755, December.
    19. Gokmen Ceribasi & Ahmet Iyad Ceyhunlu & Andrzej Wałęga & Dariusz Młyński, 2022. "Investigation of the Effect of Climate Change on Energy Produced by Hydroelectric Power Plants (HEPPs) by Trend Analysis Method: A Case Study for Dogancay I–II HEPPs," Energies, MDPI, vol. 15(7), pages 1-17, March.
    20. Swarupa Paudel & Neekita Joshi & Ajay Kalra, 2023. "Projected Future Flooding Pattern of Wabash River in Indiana and Fountain Creek in Colorado: An Assessment Utilizing Bias-Corrected CMIP6 Climate Data," Forecasting, MDPI, vol. 5(2), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:11:d:10.1007_s11069-024-06588-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.