IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v119y2023i1d10.1007_s11069-023-06128-1.html
   My bibliography  Save this article

A dynamic visualization based on conceptual graphs to capture the knowledge for disaster education on floods

Author

Listed:
  • Yukun Guo

    (Southwest Jiaotong University)

  • Jun Zhu

    (Southwest Jiaotong University)

  • Jigang You

    (Southwest Jiaotong University)

  • Saied Pirasteh

    (Southwest Jiaotong University)

  • Weilian Li

    (University of Bonn)

  • Jianlin Wu

    (Southwest Jiaotong University)

  • Jianbo Lai

    (Southwest Jiaotong University)

  • Pei Dang

    (Southwest Jiaotong University)

Abstract

Enhancing the capacity and awareness of individuals in disaster prevention and mitigation requires an intuitive and comprehensible method for representing flood hazard education knowledge. To address the challenges of complex information transfer and limited knowledge expression in flood disaster education, this paper proposes a novel strategy. The approach utilizes conceptual graphs to organize and guide the visual representation of flood disaster knowledge. It involves connecting flood data and knowledge elements using concept nodes and relationships, and translating them into dynamic visual representations through instantiation methods. A prototype system was developed to visualize disaster data obtained from flood-affected areas. The visualization output was compared to expert-based reports using a questionnaire, focusing on attractiveness and comprehensibility. The results demonstrated the superiority of our approach, with higher scores of 0.433 and 0.22 (on a scale of 0–1) for attractiveness and comprehensibility, respectively. This highlights the effectiveness of our approach in displaying flood knowledge and facilitating its dissemination. In summary, this paper introduces a comprehensive and dynamic visualization approach for the entire flood process, integrating relevant disaster knowledge. It presents a fresh perspective on digital disaster education tailored to floods, aiming to enhance public awareness of flood risk prevention.

Suggested Citation

  • Yukun Guo & Jun Zhu & Jigang You & Saied Pirasteh & Weilian Li & Jianlin Wu & Jianbo Lai & Pei Dang, 2023. "A dynamic visualization based on conceptual graphs to capture the knowledge for disaster education on floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 203-220, October.
  • Handle: RePEc:spr:nathaz:v:119:y:2023:i:1:d:10.1007_s11069-023-06128-1
    DOI: 10.1007/s11069-023-06128-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06128-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06128-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Javed Mallick & Roquia Salam & Ruhul Amin & Abu Reza Md. Towfiqul Islam & Aznarul Islam & Md. Nur Alam Siddik & G. M. Monirul Alam, 2022. "Assessing factors affecting drought, earthquake, and flood risk perception: empirical evidence from Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1633-1656, June.
    2. Bernard Kamsu-Foguem & Germaine Tchuenté-Foguem & Clovis Foguem, 2014. "Using conceptual graphs for clinical guidelines representation and knowledge visualization," Information Systems Frontiers, Springer, vol. 16(4), pages 571-589, September.
    3. Mihoko Sakurai & Rajib Shaw, 2022. "The Potential of Digitally Enabled Disaster Education for Sustainable Development Goals," Sustainability, MDPI, vol. 14(11), pages 1-17, May.
    4. Francesco Dottori & Wojciech Szewczyk & Juan-Carlos Ciscar & Fang Zhao & Lorenzo Alfieri & Yukiko Hirabayashi & Alessandra Bianchi & Ignazio Mongelli & Katja Frieler & Richard A. Betts & Luc Feyen, 2018. "Increased human and economic losses from river flooding with anthropogenic warming," Nature Climate Change, Nature, vol. 8(9), pages 781-786, September.
    5. Masahiro Shoji & Yoko Takafuji & Tetsuya Harada, 2020. "Formal education and disaster response of children: evidence from coastal villages in Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2183-2205, September.
    6. Francesco Dottori & Wojciech Szewczyk & Juan-Carlos Ciscar & Fang Zhao & Lorenzo Alfieri & Yukiko Hirabayashi & Alessandra Bianchi & Ignazio Mongelli & Katja Frieler & Richard A. Betts & Luc Feyen, 2018. "Author Correction: Increased human and economic losses from river flooding with anthropogenic warming," Nature Climate Change, Nature, vol. 8(11), pages 1021-1021, November.
    7. Liang Guo & Bingshun He & Meihong Ma & Qingrui Chang & Qing Li & Ke Zhang & Yang Hong, 2019. "Correction to: A comprehensive flash flood defense system in China: overview, achievements, and outlook," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1191-1191, November.
    8. Rabiul Islam & Roslina Kamaruddin & Siti Aznor Ahmad & Soon Jan Jan & Abdul Rahim Anuar, 2016. "A Review on Mechanism of Flood Disaster Management in Asia," International Review of Management and Marketing, Econjournals, vol. 6(1), pages 29-52.
    9. E. F. Asbridge & D. Low Choy & B. Mackey & S. Serrao-Neumann & P. Taygfeld & K. Rogers, 2021. "Coastal flood risk within a peri-urban area: Sussex Inlet district, SE Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 999-1026, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Álvaro-Francisco Morote & Jorge Olcina, 2024. "Preventing through Sustainability Education: Training and the Perception of Floods among School Children," Sustainability, MDPI, vol. 16(11), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Devitt & Jeffrey Neal & Gemma Coxon & James Savage & Thorsten Wagener, 2023. "Flood hazard potential reveals global floodplain settlement patterns," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yanfang Lyu & Yun Xiang & Dong Wang, 2023. "Evaluating Indirect Economic Losses from Flooding Using Input–Output Analysis: An Application to China’s Jiangxi Province," IJERPH, MDPI, vol. 20(5), pages 1-17, March.
    3. Binod Baniya & Qiuhong Tang & Tirtha Raj Adhikari & Gang Zhao & Gebremedhin Gebremeskel Haile & Madan Sigdel & Li He, 2024. "Climate change induced Melamchi extreme flood and environment implication in central Himalaya of Nepal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 11009-11029, September.
    4. Igor Leščešen & Mojca Šraj & Biljana Basarin & Dragoslav Pavić & Minučer Mesaroš & Manfred Mudelsee, 2022. "Regional Flood Frequency Analysis of the Sava River in South-Eastern Europe," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    5. Heather Craig & Ryan Paulik & Utkur Djanibekov & Patrick Walsh & Alec Wild & Benjamin Popovich, 2021. "Quantifying National-Scale Changes in Agricultural Land Exposure to Fluvial Flooding," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    6. Mustafa Hakkı Aydoğdu & Mehmet Cançelik & Mehmet Reşit Sevinç & Mehmet Ali Çullu & Kasım Yenigün & Nihat Küçük & Bahri Karlı & Şevket Ökten & Uğur Beyazgül & Hatice Parlakçı Doğan & Gönül Sevinç & Zel, 2021. "Are You Happy to Be a Farmer? Understanding Indicators Related to Agricultural Production and Influencing Factors: GAP-Şanlıurfa, Turkey," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    7. Hemin Sun & Valentina Krysanova & Yu Gong & Miaoni Gao & Simon Treu & Ziyan Chen & Tong Jiang, 2024. "The recent trends of runoff in China attributable to climate change," Climatic Change, Springer, vol. 177(11), pages 1-19, November.
    8. Shala, Iliriana & Schumacher, Benno, 2022. "The impact of natural disasters on banks' impairment flow: Evidence from Germany," Discussion Papers 36/2022, Deutsche Bundesbank.
    9. Utkur Djanibekov & Maksym Polyakov & Heather Craig & Ryan Paulik, 2024. "Flood Impacts on Agriculture under Climate Change: The case of the Awanui Catchment, New Zealand," Economics of Disasters and Climate Change, Springer, vol. 8(2), pages 283-316, July.
    10. Martina Angela Caretta & Valeria Fanghella & Pam Rittelmeyer & Jaishri Srinivasan & Prajjwal K. Panday & Jagadish Parajuli & Ritu Priya & E. B. Uday Bhaskar Reddy & Cydney Kate Seigerman & Aditi Mukhe, 2023. "Migration as adaptation to freshwater and inland hydroclimatic changes? A meta-review of existing evidence," Climatic Change, Springer, vol. 176(8), pages 1-22, August.
    11. Yang, Sheng & Zhang, Lu & Song, Dongran, 2022. "Conceptual design, optimization and thermodynamic analysis of a CO2 capture process based on Rectisol," Energy, Elsevier, vol. 244(PA).
    12. Héctor Leopoldo Venegas-Quiñones & Pablo García-Chevesich & Rodrigo Valdés-Pineda & Ty P. A. Ferré & Hoshin Gupta & Derek Groenendyk & Juan B. Valdés & John E. McCray & Laura Bakkensen, 2024. "Creating Sustainable Flood Maps Using Machine Learning and Free Remote Sensing Data in Unmapped Areas," Sustainability, MDPI, vol. 16(20), pages 1-17, October.
    13. Shihao Zhang & Junhe Tan & Junhang Liu & Jiaqi Wang & Ata Tara, 2022. "Suitability Prediction and Enhancement of Future Water Supply Systems in Barwon Region in Victoria, Australia," Land, MDPI, vol. 11(5), pages 1-20, April.
    14. Chaowei Xu & Jiashuai Yang & Lingyue Wang, 2022. "Application of Remote-Sensing-Based Hydraulic Model and Hydrological Model in Flood Simulation," Sustainability, MDPI, vol. 14(14), pages 1-14, July.
    15. Muhammad Chrisna Satriagasa & Piyapong Tongdeenok & Naruemol Kaewjampa, 2023. "Assessing the Implication of Climate Change to Forecast Future Flood Using SWAT and HEC-RAS Model under CMIP5 Climate Projection in Upper Nan Watershed, Thailand," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    16. Md. Uzzal Mia & Tahmida Naher Chowdhury & Rabin Chakrabortty & Subodh Chandra Pal & Mohammad Khalid Al-Sadoon & Romulus Costache & Abu Reza Md. Towfiqul Islam, 2023. "Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer," Land, MDPI, vol. 12(4), pages 1-26, April.
    17. Bethany Robinson & Jonathan D. Herman, 2019. "A framework for testing dynamic classification of vulnerable scenarios in ensemble water supply projections," Climatic Change, Springer, vol. 152(3), pages 431-448, March.
    18. Thomas Thaler, 2021. "Just retreat—how different countries deal with it: examples from Austria and England," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 11(3), pages 412-419, September.
    19. N. Zafirah & N. A. Nurin & M. S. Samsurijan & M. H. Zuknik & M. Rafatullah & M. I. Syakir, 2017. "Sustainable Ecosystem Services Framework for Tropical Catchment Management: A Review," Sustainability, MDPI, vol. 9(4), pages 1-25, April.
    20. Parry, Luke & Radel, Claudia & Adamo, Susana B. & Clark, Nigel & Counterman, Miriam & Flores-Yeffal, Nadia & Pons, Diego & Romero-Lankao, Paty & Vargo, Jason, 2019. "The (in)visible health risks of climate change," Social Science & Medicine, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:119:y:2023:i:1:d:10.1007_s11069-023-06128-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.