IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v104y2020i3d10.1007_s11069-020-04277-1.html
   My bibliography  Save this article

Simulation of strong ground motion due to active Sohna fault in Delhi, National Capital Region (NCR) of India: an implication for imminent plausible seismic hazard

Author

Listed:
  • Manisha Sandhu

    (Kurukshetra University)

  • Babita Sharma

    (National Center for Seismology, Ministry of Earth Sciences)

  • Himanshu Mittal

    (National Taiwan University)

  • R. B. S. Yadav

    (Kurukshetra University)

  • Dinesh Kumar

    (Kurukshetra University)

  • S. S. Teotia

    (Kurukshetra University)

Abstract

Delhi, National Capital Region (NCR) of India, falls in the seismic Zone IV (Zone factor 0.24) on the seismic zoning map prepared by the Bureau of Indian Standards (BIS), and this region may experience devastating intensities in case of plausible moderate to the major earthquake in the vicinity. The strategic geological, geomorphological, and geographic characteristics make this seat of administrative power more vulnerable toward the earthquake disaster right from the ancient periods. Therefore, we study the impact of the M 6.0 earthquake sourced at Sohna fault in the neighborhood of the capital region by generating synthetic accelerograms through semiempirical envelop technique. The observed accelerograms of November 25, 2007 ( $$M_{w}$$ M w 4.7) earthquake have been modeled to utilize the reliability of the semiempirical approach. To analyze the actual scenario, the ground motions at the surface have been generated after the incorporation of the site effects because different soil conditions of NCR fascinate different degrees of damage in case of a destructive earthquake. As a result, the obtained peak ground acceleration (PGA) varies between 100 and 600 cm/s2, and some of the sites exhibit even higher PGA values being situated on the sediments of river-oriented plain areas and proximity of the source. The spatial distribution of estimated values of PGA and spectral accelerations at different periods show that sites in NCR like Delhi (600 cm/s2), Sonipat (633 cm/s2), Gurgaon (461 cm/s2), and Faridabad (300 cm/s2) exhibit high to severe seismic hazard in case of M 6.0 at Sohna fault and it is suggested that a population of about 4.78 million along with the infrastructure of this region is exposed to high risk. The estimated seismic exposure of the population is important to utilize the resources properly before the destructive earthquake incidence. The hazard maps for PGA and different structural periods in the NCR region reveal the level of seismic hazard and risk of the study region. These hazard maps are very helpful for administrators, stakeholders, and civil engineers to construct earthquake-resistant structures to minimize the risk generated by the future impending earthquakes. The exponential growth of the buildings, industries, businesses, etc., attracts the attention of urban area planners because of high seismic risk due to the damaging earthquakes, and its severity must be understood to save the life and property to mitigate the natural disaster like an earthquake by proper disaster mitigation plans, especially in the metropolitan cities like Delhi NCR.

Suggested Citation

  • Manisha Sandhu & Babita Sharma & Himanshu Mittal & R. B. S. Yadav & Dinesh Kumar & S. S. Teotia, 2020. "Simulation of strong ground motion due to active Sohna fault in Delhi, National Capital Region (NCR) of India: an implication for imminent plausible seismic hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2389-2408, December.
  • Handle: RePEc:spr:nathaz:v:104:y:2020:i:3:d:10.1007_s11069-020-04277-1
    DOI: 10.1007/s11069-020-04277-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04277-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04277-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Lyubushin & T. Tsapanos & V. Pisarenko & G. Koravos, 2002. "Seismic Hazard for Selected Sites in Greece: A Bayesian Estimate of Seismic Peak Ground Acceleration," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 25(1), pages 83-98, January.
    2. Manisha Sandhu & Dinesh Kumar & S. S. Teotia, 2017. "Estimation of site amplification functions for the National Capital (Delhi) Region, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 171-195, January.
    3. Dinesh Kumar & Irene Sarkar & V. Sriram & S. Teotia, 2012. "Evaluating the seismic hazard to the National Capital (Delhi) Region, India, from moderate earthquakes using simulated accelerograms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 481-500, March.
    4. G. Joshi & M. Sharma, 2011. "Strong ground-motion prediction and uncertainties estimation for Delhi, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 617-637, November.
    5. Sandeep & A. Joshi & Kamal & Parveen Kumar & Pushpa Kumari, 2014. "Modeling of strong motion generation area of the Uttarkashi earthquake using modified semiempirical approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 2041-2066, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brijesh K. Bansal & S. K. Singh & G. Suresh & H. Mittal, 2022. "A source and ground motion study of earthquakes in and near Delhi (the National Capital Region), India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1885-1905, March.
    2. Sreevalsa Kolathayar, 2021. "Recent seismicity in Delhi and population exposure to seismic hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2621-2648, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sutapa Chaudhuri & Arumita Roy Chowdhury & Payel Das, 2018. "Implementation of Sugeno: ANFIS for forecasting the seismic moment of large earthquakes over Indo-Himalayan region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 391-405, January.
    2. Saikat Kuili & Ravi S. Jakka, 2023. "Reliable assessment of seismic site class using stochastic approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2419-2458, September.
    3. V. A. Pavlenko, 2017. "Estimation of the upper bound of seismic hazard curve by using the generalised extreme value distribution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 19-33, October.
    4. Yusuf Bayrak & Tuğba Türker, 2017. "Evaluating of the earthquake hazard parameters with Bayesian method for the different seismic source regions of the North Anatolian Fault Zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 379-401, January.
    5. H. Mandal & P. Khan & A. Shukla, 2014. "Soil responses near Delhi ridge and adjacent regions in Greater Delhi during incidence of a local earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 93-118, January.
    6. Minakshi Mishra & Abhishek & R. B. S. Yadav & Manisha Sandhu, 2021. "Probabilistic assessment of earthquake hazard in the Andaman–Nicobar–Sumatra region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 313-338, January.
    7. Manisha Sandhu & Dinesh Kumar & S. S. Teotia, 2017. "Estimation of site amplification functions for the National Capital (Delhi) Region, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 171-195, January.
    8. Anjali Sharma & Renu Yadav & Dinesh Kumar & Ajay Paul & S. S. Teotia, 2021. "Estimation of site response functions for the central seismic gap of Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1899-1933, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:104:y:2020:i:3:d:10.1007_s11069-020-04277-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.