IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v63y2012i2p909-937.html
   My bibliography  Save this article

Earthquake hazards and community resilience in Baluchistan

Author

Listed:
  • Syed Ainuddin
  • Jayant Routray

Abstract

Resilience is widely used from a variety of research perspectives; however, community resilience in particular is applied to a number of natural hazards and disasters-related studies, programs, and activities. It is also acknowledged that its measurement is cumbersome but not impossible. The prime objective of this paper is to measure the community resilience of an earthquake-prone area in Baluchistan. The article presents the concept of resilience, its approaches, selection of indicators, formulation of subjective assessment method for weighting the indicators, and finally, developing the community resilience index. For the community resilience measurement, a survey was conducted among 200 households in two earthquake risk zones of Quetta city, using simple random sampling method. The overall composite community resilience index revealed that the resilience is low in both the zones—A and B. However, it is revealed that there is a significant difference between the zones when compared against the components and indicators. Community resilience components such as economic, institutional, and physical have received higher index values in Zone B as compared to Zone A. Based on the findings, it is recommended to improve the socioeconomic, institutional, and structural (housing) conditions of the community by raising the community awareness and preparedness, implementing building codes, and providing income-generating activities in order to enhance the community resilience to cope up with earthquake hazards in the future. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Syed Ainuddin & Jayant Routray, 2012. "Earthquake hazards and community resilience in Baluchistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 909-937, September.
  • Handle: RePEc:spr:nathaz:v:63:y:2012:i:2:p:909-937
    DOI: 10.1007/s11069-012-0201-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0201-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0201-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masozera, Michel & Bailey, Melissa & Kerchner, Charles, 2007. "Distribution of impacts of natural disasters across income groups: A case study of New Orleans," Ecological Economics, Elsevier, vol. 63(2-3), pages 299-306, August.
    2. B. Smit & I. Burton & R.J.T. Klein & R. Street, 1999. "The Science of Adaptation: A Framework for Assessment," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 4(3), pages 199-213, September.
    3. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohsen Alizadeh & Esmaeil Alizadeh & Sara Asadollahpour Kotenaee & Himan Shahabi & Amin Beiranvand Pour & Mahdi Panahi & Baharin Bin Ahmad & Lee Saro, 2018. "Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    2. Jonathan W. F. Remo & Nicholas Pinter & Moe Mahgoub, 2016. "Assessing Illinois’s flood vulnerability using Hazus-MH," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 265-287, March.
    3. Le-Le Zou & Yi-Ming Wei, 2009. "Impact assessment using DEA of coastal hazards on social-economy in Southeast Asia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 167-189, February.
    4. Fabio Cian & Carlo Giupponi & Mattia Marconcini, 2021. "Integration of earth observation and census data for mapping a multi-temporal flood vulnerability index: a case study on Northeast Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2163-2184, April.
    5. Fabio, Farinosi & Carrera, Lorenzo & Maziotis, Alexandros & Mysiak, Jaroslav & Eboli, Fabio & Standardi, Gabriele, 2012. "Policy-relevant Assessment Method of Socio-economic Impacts of Floods: An Italian Case Study," Climate Change and Sustainable Development 143117, Fondazione Eni Enrico Mattei (FEEM).
    6. Sara Lindersson & Elena Raffetti & Maria Rusca & Luigia Brandimarte & Johanna Mård & Giuliano Di Baldassarre, 2023. "The wider the gap between rich and poor the higher the flood mortality," Nature Sustainability, Nature, vol. 6(8), pages 995-1005, August.
    7. Nicolás C. Bronfman & Paula B. Repetto & Nikole Guerrero & Javiera V. Castañeda & Pamela C. Cisternas, 2021. "Temporal evolution in social vulnerability to natural hazards in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1757-1784, June.
    8. Shuangshuang Tang & Xin Li, 2021. "Responding to the pandemic as a family unit: social impacts of COVID-19 on rural migrants in China and their coping strategies," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-11, December.
    9. Richard Bernknopf & Paul Amos, 2014. "Measuring earthquake risk concentration for hazard mitigation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2163-2192, December.
    10. Fischer, Alexandra Paige, 2018. "Pathways of adaptation to external stressors in coastal natural-resource-dependent communities: Implications for climate change," World Development, Elsevier, vol. 108(C), pages 235-248.
    11. Eric Tate & Aaron Strong & Travis Kraus & Haoyi Xiong, 2016. "Flood recovery and property acquisition in Cedar Rapids, Iowa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2055-2079, February.
    12. J. Connor Darlington & Niko Yiannakoulias & Amin Elshorbagy, 2022. "Changes in social vulnerability to flooding: a quasi-experimental analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2487-2509, April.
    13. Alejandra Maldonado & Timothy W. Collins & Sara E. Grineski & Jayajit Chakraborty, 2016. "Exposure to Flood Hazards in Miami and Houston: Are Hispanic Immigrants at Greater Risk than Other Social Groups?," IJERPH, MDPI, vol. 13(8), pages 1-20, August.
    14. Elaina J. Sutley & Sara Hamideh, 2020. "Postdisaster Housing Stages: A Markov Chain Approach to Model Sequences and Duration Based on Social Vulnerability," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2675-2695, December.
    15. Eric Tate & Aaron Strong & Travis Kraus & Haoyi Xiong, 2016. "Flood recovery and property acquisition in Cedar Rapids, Iowa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2055-2079, February.
    16. D. J. Roncancio & A. C. Nardocci, 2016. "Social vulnerability to natural hazards in São Paulo, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1367-1383, November.
    17. Sungyoon Lee & Jennifer Dodge & Gang Chen, 2022. "The cost of social vulnerability: an integrative conceptual framework and model for assessing financial risks in natural disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 691-712, October.
    18. Sisi Meng & Pallab Mozumder, 2021. "Hurricane Sandy: Damages, Disruptions and Pathways to Recovery," Economics of Disasters and Climate Change, Springer, vol. 5(2), pages 223-247, July.
    19. Daniel Felsenstein & Michal Lichter, 2014. "Social and economic vulnerability of coastal communities to sea-level rise and extreme flooding," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 463-491, March.
    20. Kelsea Best & Siobhan Kerr & Allison Reilly & Anand Patwardhan & Deb Niemeier & Seth Guikema, 2023. "Spatial regression identifies socioeconomic inequality in multi-stage power outage recovery after Hurricane Isaac," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 851-873, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:63:y:2012:i:2:p:909-937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.