IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v117y2023i1d10.1007_s11069-023-05851-z.html
   My bibliography  Save this article

Atmospheric patterns favourable to storm surge events on the coast of São Paulo State, Brazil

Author

Listed:
  • Marcely Sondermann

    (National Institute for Space Research)

  • Sin Chan Chou

    (National Institute for Space Research)

  • Celia Regina de Gouveia Souza

    (Secretariat for the Infrastructure and Environment of the State of São Paulo)

  • Judith Rodrigues

    (Federal University of Rio de Janeiro)

  • Jean David Caprace

    (Federal University of Rio de Janeiro)

Abstract

Southeast Brazil is occasionally affected by intense storm surges that cause coastal erosion, coastal inundation, destruction of local infrastructure, and floods. This work is aimed at identifying the large-scale atmospheric conditions favourable to causing storm surges that reach the coast of the Sao Paulo State in Southeast Brazil. Based on ERA5 reanalysis data from May between 1981 and 2010, storms were identified on 89 surge days. Storm surge days are characterized by a significant wave height that exceeds 2.5 m. These surge days were clustered into three atmospheric patterns. Cluster Pattern 1 contains 10 storm surge days characterized by a low-pressure centre near the coastline and winds blowing parallel to the coast. These surface conditions are combined with upward vertical motion at 500 hPa and an upper-level jet stream, which helps rain formation over the ocean. Cluster Pattern 2 contains 22 events. The main feature of this pattern is the long and wide wind fetch area over the ocean, which generates a large area of intense winds that allows a more efficient propagation of high waves. This pattern shows the most significant rainfall values over the coastal area. Cluster Pattern 3 presents the largest number of surge days, totalling 57. The atmospheric pressure gradient established by the high-pressure system and the elongated trough over the ocean produces intense southerly winds along the coast, which favour high waves in this region. Therefore, the described atmospheric patterns favourable to storm surge events can be applied to forecasting systems and contribute to storm surge alerts in the Sao Paulo coastal zone.

Suggested Citation

  • Marcely Sondermann & Sin Chan Chou & Celia Regina de Gouveia Souza & Judith Rodrigues & Jean David Caprace, 2023. "Atmospheric patterns favourable to storm surge events on the coast of São Paulo State, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 93-111, May.
  • Handle: RePEc:spr:nathaz:v:117:y:2023:i:1:d:10.1007_s11069-023-05851-z
    DOI: 10.1007/s11069-023-05851-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-05851-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-05851-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanne Muis & Martin Verlaan & Hessel C. Winsemius & Jeroen C. J. H. Aerts & Philip J. Ward, 2016. "A global reanalysis of storm surges and extreme sea levels," Nature Communications, Nature, vol. 7(1), pages 1-12, September.
    2. Thomas Wahl & Shaleen Jain & Jens Bender & Steven D. Meyers & Mark E. Luther, 2015. "Increasing risk of compound flooding from storm surge and rainfall for major US cities," Nature Climate Change, Nature, vol. 5(12), pages 1093-1097, December.
    3. Sanne Muis & Martin Verlaan & Hessel C. Winsemius & Jeroen C. J. H. Aerts & Philip J. Ward, 2016. "Correction: Corrigendum: A global reanalysis of storm surges and extreme sea levels," Nature Communications, Nature, vol. 7(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Maruyama Rentschler,Jun Erik & Salhab,Melda, 2020. "People in Harm's Way : Flood Exposure and Poverty in 189 Countries," Policy Research Working Paper Series 9447, The World Bank.
    3. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    4. Shijin Wang, 2024. "Opportunities and threats of cryosphere change to the achievement of UN 2030 SDGs," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    5. Maruyama Rentschler,Jun Erik & Avner,Paolo & Marconcini,Mattia & Su,Rui & Strano,Emanuele & Bernard,Louise Alice Karine & Riom,Capucine Anne Veronique & Hallegatte,Stephane, 2022. "Rapid Urban Growth in Flood Zones : Global Evidence since 1985," Policy Research Working Paper Series 10014, The World Bank.
    6. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Oliver E. J. Wing & William Lehman & Paul D. Bates & Christopher C. Sampson & Niall Quinn & Andrew M. Smith & Jeffrey C. Neal & Jeremy R. Porter & Carolyn Kousky, 2022. "Inequitable patterns of US flood risk in the Anthropocene," Nature Climate Change, Nature, vol. 12(2), pages 156-162, February.
    8. Vincent T. M. Zelst & Jasper T. Dijkstra & Bregje K. Wesenbeeck & Dirk Eilander & Edward P. Morris & Hessel C. Winsemius & Philip J. Ward & Mindert B. Vries, 2021. "Cutting the costs of coastal protection by integrating vegetation in flood defences," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    9. Bevacqua, Emanuele & Maraun, Douglas & Vousdoukas, Michalis I. & Voukouvalas, Evangelos & Vrac, Mathieu & Mentaschi, Lorenzo & Widmann, Martin, 2018. "Higher potential compound flood risk in Northern Europe under anthropogenic climate change," Earth Arxiv ta764, Center for Open Science.
    10. Philip Antwi-Agyei & Frank Baffour-Ata & Sarah Koomson & Nana Kwame Kyeretwie & Nana Barimah Nti & Afia Oforiwaa Owusu & Fukaiha Abdul Razak, 2023. "Drivers and coping mechanisms for floods: experiences of residents in urban Kumasi, Ghana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2477-2500, March.
    11. Swen Jullien & Jérôme Aucan & Elodie Kestenare & Matthieu Lengaigne & Christophe Menkes, 2024. "Unveiling the global influence of tropical cyclones on extreme waves approaching coastal areas," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Cameron Do & Yuriy Kuleshov, 2023. "Tropical cyclone multi-hazard risk mapping for Queensland, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3725-3746, April.
    13. Jiayi Fang & Robert J. Nicholls & Sally Brown & Daniel Lincke & Jochen Hinkel & Athanasios T. Vafeidis & Shiqiang Du & Qing Zhao & Min Liu & Peijun Shi, 2022. "Benefits of subsidence control for coastal flooding in China," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Pramod K. Singh & Konstantinos Papageorgiou & Harpalsinh Chudasama & Elpiniki I. Papageorgiou, 2019. "Evaluating the Effectiveness of Climate Change Adaptations in the World’s Largest Mangrove Ecosystem," Sustainability, MDPI, vol. 11(23), pages 1-17, November.
    15. Michalis I. Vousdoukas & Joanne Clarke & Roshanka Ranasinghe & Lena Reimann & Nadia Khalaf & Trang Minh Duong & Birgitt Ouweneel & Salma Sabour & Carley E. Iles & Christopher H. Trisos & Luc Feyen & L, 2022. "African heritage sites threatened as sea-level rise accelerates," Nature Climate Change, Nature, vol. 12(3), pages 256-262, March.
    16. Jun Rentschler & Melda Salhab & Bramka Arga Jafino, 2022. "Flood exposure and poverty in 188 countries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Michalis I. Vousdoukas & Panagiotis Athanasiou & Alessio Giardino & Lorenzo Mentaschi & Alessandro Stocchino & Robert E. Kopp & Pelayo Menéndez & Michael W. Beck & Roshanka Ranasinghe & Luc Feyen, 2023. "Small Island Developing States under threat by rising seas even in a 1.5 °C warming world," Nature Sustainability, Nature, vol. 6(12), pages 1552-1564, December.
    18. Tina Dura & Andra J. Garner & Robert Weiss & Robert E. Kopp & Simon E. Engelhart & Robert C. Witter & Richard W. Briggs & Charles S. Mueller & Alan R. Nelson & Benjamin P. Horton, 2021. "Changing impacts of Alaska-Aleutian subduction zone tsunamis in California under future sea-level rise," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    19. Bing-Chen Jhong & Jung Huang & Ching-Pin Tung, 2019. "Spatial Assessment of Climate Risk for Investigating Climate Adaptation Strategies by Evaluating Spatial-Temporal Variability of Extreme Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3377-3400, August.
    20. J. J. Wijetunge & N. G. P. B. Neluwala, 2023. "Compound flood hazard assessment and analysis due to tropical cyclone-induced storm surges, waves and precipitation: a case study for coastal lowlands of Kelani river basin in Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3979-4007, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:117:y:2023:i:1:d:10.1007_s11069-023-05851-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.