IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v114y2022i3d10.1007_s11069-022-05506-5.html
   My bibliography  Save this article

Dynamic agricultural drought risk assessment for maize using weather generator and APSIM crop models

Author

Listed:
  • Yaxu Wang

    (China Institute of Water Resources and Hydropower Research
    Postdoctoral Workstation of China Reinsurance (Group) Corporation)

  • Juan Lv

    (China Institute of Water Resources and Hydropower Research)

  • Hongquan Sun

    (National Institute of Natural Hazards)

  • Huiqiang Zuo

    (China RE Catastrophe Risk Management Company Ltd.)

  • Hui Gao

    (China Institute of Water Resources and Hydropower Research)

  • Yanping Qu

    (China Institute of Water Resources and Hydropower Research)

  • Zhicheng Su

    (China Institute of Water Resources and Hydropower Research)

  • Xiaojing Yang

    (China Institute of Water Resources and Hydropower Research)

  • Jianming Yin

    (China RE Catastrophe Risk Management Company Ltd.)

Abstract

Drought risk assessment provides a vital basis for drought relief and prevention. We developed a dynamic agricultural drought risk (DADR) assessment model to predict drought trends and their impacts on crop yield in real time. A weather generator was employed to produce daily meteorological scenarios to simulate drought trends stochastically. Then, it was used to drive a crop model for simulating drought-induced yield loss. The yield loss rate was calculated to assess the DADR, whereas the cumulative yield loss rate was calculated to measure the cumulative impacts of drought on yield. The drought that occurred in the Liaoning Province in 2000 was selected as a case study, and the DADR was assessed weekly during the maize growth period. The statistical parameters of historical meteorological data were used to prove the rationality of meteorological scenarios. The crop data from 1996 to 2012 were used for crop model calibration and verification. The results showed that, on July 3, 2000, the majority of the Liaoning Province experienced severe or moderate DADR, which showed an increasing trend from east to west, while the highest DADR (over 35%) was noted in Fuxin and Chaoyang. The drought during the maize growth period in 2000 caused an average cumulative yield loss rate of 62.4%. The drought in the early seeding and milk maturity stages had a negligible impact on maize yield, contrary to that in the jointing to tasseling period. Our study provides insights into the implementation of drought relief measures and the development of drought monitoring systems.

Suggested Citation

  • Yaxu Wang & Juan Lv & Hongquan Sun & Huiqiang Zuo & Hui Gao & Yanping Qu & Zhicheng Su & Xiaojing Yang & Jianming Yin, 2022. "Dynamic agricultural drought risk assessment for maize using weather generator and APSIM crop models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3083-3100, December.
  • Handle: RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05506-5
    DOI: 10.1007/s11069-022-05506-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05506-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05506-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bin Li & Hongbo Su & Fang Chen & Jianjun Wu & Jianwei Qi, 2013. "The changing characteristics of drought in China from 1982 to 2005," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 723-743, September.
    2. Hong Wu & Donald Wilhite, 2004. "An Operational Agricultural Drought Risk Assessment Model for Nebraska, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(1), pages 1-21, September.
    3. Dai, Meng & Huang, Shengzhi & Huang, Qiang & Leng, Guoyong & Guo, Yi & Wang, Lu & Fang, Wei & Li, Pei & Zheng, Xudong, 2020. "Assessing agricultural drought risk and its dynamic evolution characteristics," Agricultural Water Management, Elsevier, vol. 231(C).
    4. Zhao, Gang & Bryan, Brett A. & Song, Xiaodong, 2014. "Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters," Ecological Modelling, Elsevier, vol. 279(C), pages 1-11.
    5. Qi Zhang & Jiquan Zhang & Denghua Yan & Yulong Bao, 2013. "Dynamic risk prediction based on discriminant analysis for maize drought disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1275-1284, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monteleone, Beatrice & Borzí, Iolanda & Arosio, Marcello & Cesarini, Luigi & Bonaccorso, Brunella & Martina, Mario, 2023. "Modelling the response of wheat yield to stage-specific water stress in the Po Plain," Agricultural Water Management, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping Zhang & Zhuo Chen & Gang Ding & Jiaqi Fang & Jinglong Fan & Shengyu Li, 2024. "Spatial Analysis and Risk Assessment of Meteorological Disasters Affecting Cotton Cultivation in Xinjiang: A Comprehensive Model Approach," Sustainability, MDPI, vol. 16(12), pages 1-17, June.
    2. Rui Li & Jing’ai Wang & Tianjie Zhao & Jiancheng Shi, 2016. "Index-based evaluation of vegetation response to meteorological drought in Northern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2179-2193, December.
    3. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    4. Jianjun Huai, 2016. "Role of Livelihood Capital in Reducing Climatic Vulnerability: Insights of Australian Wheat from 1990–2010," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-18, March.
    5. Tao He & Wenya Zhang & Hanwen Zhang & Jinliang Sheng, 2023. "Estimation of Manure Emissions Issued from Different Chinese Livestock Species: Potential of Future Production," Agriculture, MDPI, vol. 13(11), pages 1-17, November.
    6. Sergio Vicente-Serrano, 2007. "Evaluating the Impact of Drought Using Remote Sensing in a Mediterranean, Semi-arid Region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(1), pages 173-208, January.
    7. Yu Xiaobing & Li Chenliang & Huo Tongzhao & Ji Zhonghui, 2021. "Information diffusion theory-based approach for the risk assessment of meteorological disasters in the Yangtze River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2337-2362, July.
    8. Cui, Yi & Zhou, Yuliang & Jin, Juliang & Jiang, Shangming & Wu, Chengguo & Ning, Shaowei, 2023. "Spatiotemporal characteristics and obstacle factors identification of agricultural drought disaster risk: A case study across Anhui Province, China," Agricultural Water Management, Elsevier, vol. 289(C).
    9. Yaojie Yue & Jian Li & Xinyue Ye & Zhiqiang Wang & A-Xing Zhu & Jing-ai Wang, 2015. "An EPIC model-based vulnerability assessment of wheat subject to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1629-1652, September.
    10. Dongxing Zhang & Dang Luo, 2022. "Assessment of agricultural drought loss using a skewed grey cloud ordered clustering model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2787-2810, December.
    11. Juan Quijano & Miguel Jaimes & Marco Torres & Eduardo Reinoso & Luisarturo Castellanos & Jesús Escamilla & Mario Ordaz, 2015. "Event-based approach for probabilistic agricultural drought risk assessment under rainfed conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1297-1318, March.
    12. Bambo Bayo & Shakeel Mahmood, 2023. "Geo-spatial analysis of drought in The Gambia using multiple models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2751-2770, July.
    13. Israel R. Orimoloye & Adeyemi O. Olusola & Johanes A. Belle & Chaitanya B. Pande & Olusola O. Ololade, 2022. "Drought disaster monitoring and land use dynamics: identification of drought drivers using regression-based algorithms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1085-1106, June.
    14. Hao Guo & Xingming Zhang & Fang Lian & Yuan Gao & Degen Lin & Jing’ai Wang, 2016. "Drought Risk Assessment Based on Vulnerability Surfaces: A Case Study of Maize," Sustainability, MDPI, vol. 8(8), pages 1-22, August.
    15. Alex Dunne & Yuriy Kuleshov, 2023. "Drought risk assessment and mapping for the Murray–Darling Basin, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 839-863, January.
    16. Chunyi Wang & Hans W. Linderholm & Yanling Song & Fang Wang & Yanju Liu & Jinfeng Tian & Jinxia Xu & Yingbo Song & Guoyu Ren, 2020. "Impacts of Drought on Maize and Soybean Production in Northeast China During the Past Five Decades," IJERPH, MDPI, vol. 17(7), pages 1-10, April.
    17. Longxia Qian & Ren Zhang & Mei Hong & Hongrui Wang & Lizhi Yang, 2016. "A new multiple integral model for water shortage risk assessment and its application in Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 43-67, January.
    18. Zhang, Yuxi & Walker, Jeffrey P. & Pauwels, Valentijn R.N., 2022. "Assimilation of wheat and soil states for improved yield prediction: The APSIM-EnKF framework," Agricultural Systems, Elsevier, vol. 201(C).
    19. Mohammad Mokhtari & Robiah Adnan & Ibrahim Busu, 2013. "A new approach for developing comprehensive agricultural drought index using satellite-derived biophysical parameters and factor analysis method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1249-1274, February.
    20. Ghaley, Bhim Bahadur & Porter, John Roy, 2014. "Ecosystem function and service quantification and valuation in a conventional winter wheat production system with DAISY model in Denmark," Ecosystem Services, Elsevier, vol. 10(C), pages 79-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05506-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.