IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v114y2022i1d10.1007_s11069-022-05416-6.html
   My bibliography  Save this article

Assessing the long-term planform dynamics of Ganges–Jamuna confluence with the aid of remote sensing and GIS

Author

Listed:
  • Nafis Sadik Khan

    (Bangladesh University of Engineering and Technology (BUET))

  • Sujit Kumar Roy

    (Bangladesh University of Engineering and Technology (BUET))

  • Md. Touhidur Rahman Mazumder

    (Bangladesh Water Development Board (BWDB))

  • Swapan Talukdar

    (University of Gour Banga
    Jamia Millia Islamia)

  • Javed Mallick

    (King Khalid University)

Abstract

The confluence of the Ganges, Jamuna, and Padma rivers is one of the most dynamic in the world, an internationally important research area because of the confluence of two of the world's major rivers, the Ganges and the Brahmaputra. Morphological changes in this area have resulted in severe erosion along the banks. Riverbank erosion is one of Bangladesh's most critical issues, requiring a substantial solution. Riverbank erosion affects millions of people in Bangladesh each year because of erosion in this confluence zone. Consequently, understanding the morphological shifting pattern of the confluence is crucial. The research aims to quantify actual bank shifting near the confluence of the Ganges, Jamuna, and Padma rivers in terms of shifting rate and area during a 25-year period (1990–2015). The acquired satellite images were geo-referenced, and bank lines were digitized to carry out this research. The bank line is the linear construction that separates the outside boundary of the river channel from the floodplains. To assess channel width fluctuation, the distance between the extreme borders of the left and right banks, including mid-channel sandbars, was measured. This period is split into five stages, each lasting 5 years, to measure the maturity of change. Furthermore, the long-term trend from 1972 to 2015 is qualitatively discernible. Landsat satellite pictures were used to investigate this morphological change. The study provides current and reliable information on the planform dynamics of the Ganga–Jamuna confluence. This study will help design and implement drainage development plans and erosion control techniques in this crucial confluence zone.

Suggested Citation

  • Nafis Sadik Khan & Sujit Kumar Roy & Md. Touhidur Rahman Mazumder & Swapan Talukdar & Javed Mallick, 2022. "Assessing the long-term planform dynamics of Ganges–Jamuna confluence with the aid of remote sensing and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 883-906, October.
  • Handle: RePEc:spr:nathaz:v:114:y:2022:i:1:d:10.1007_s11069-022-05416-6
    DOI: 10.1007/s11069-022-05416-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05416-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05416-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James L. Best & Philip J. Ashworth, 1997. "Scour in large braided rivers and the recognition of sequence stratigraphic boundaries," Nature, Nature, vol. 387(6630), pages 275-277, May.
    2. Tamal Kanti Saha & Swades Pal, 2019. "Emerging conflict between agriculture extension and physical existence of wetland in post-dam period in Atreyee River basin of Indo-Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(3), pages 1485-1505, June.
    3. Yukiko Hirabayashi & Roobavannan Mahendran & Sujan Koirala & Lisako Konoshima & Dai Yamazaki & Satoshi Watanabe & Hyungjun Kim & Shinjiro Kanae, 2013. "Global flood risk under climate change," Nature Climate Change, Nature, vol. 3(9), pages 816-821, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Wen & Ana María Alarcón Ferreira & Lynn M. Rae & Hirmand Saffari & Zafar Adeel & Laura A. Bakkensen & Karla M. Méndez Estrada & Gregg M. Garfin & Renee A. McPherson & Ernesto Franco Vargas, 2022. "A Comprehensive Methodology for Evaluating the Economic Impacts of Floods: An Application to Canada, Mexico, and the United States," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    2. Haixing Liu & Yuntao Wang & Chi Zhang & Albert S. Chen & Guangtao Fu, 2018. "Assessing real options in urban surface water flood risk management under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 1-18, October.
    3. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    4. Dilshad Ahmad & Muhammad Afzal, 2021. "Impact of climate change on pastoralists’ resilience and sustainable mitigation in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11406-11426, August.
    5. Md. Uzzal Mia & Tahmida Naher Chowdhury & Rabin Chakrabortty & Subodh Chandra Pal & Mohammad Khalid Al-Sadoon & Romulus Costache & Abu Reza Md. Towfiqul Islam, 2023. "Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer," Land, MDPI, vol. 12(4), pages 1-26, April.
    6. Roopam Shukla & Ankit Agarwal & Kamna Sachdeva & Juergen Kurths & P. K. Joshi, 2019. "Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas," Climatic Change, Springer, vol. 152(1), pages 103-119, January.
    7. S. A. Mashi & A. I. Inkani & Oghenejeabor Obaro & A. S. Asanarimam, 2020. "Community perception, response and adaptation strategies towards flood risk in a traditional African city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1727-1759, September.
    8. Maruyama Rentschler,Jun Erik & Salhab,Melda, 2020. "People in Harm's Way : Flood Exposure and Poverty in 189 Countries," Policy Research Working Paper Series 9447, The World Bank.
    9. Shuhei Yoshimoto & Giriraj Amarnath, 2018. "Application of a flood inundation model to analyze the potential impacts of a flood control plan in Mundeni Aru river basin, Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 491-513, March.
    10. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    11. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    12. Yus Budiyono & Jeroen Aerts & JanJaap Brinkman & Muh Marfai & Philip Ward, 2015. "Flood risk assessment for delta mega-cities: a case study of Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 389-413, January.
    13. Bethany Robinson & Jonathan D. Herman, 2019. "A framework for testing dynamic classification of vulnerable scenarios in ensemble water supply projections," Climatic Change, Springer, vol. 152(3), pages 431-448, March.
    14. Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.
    15. Osberghaus, Daniel & Reif, Christiane, 2021. "How do different compensation schemes and loss experience affect insurance decisions? Experimental evidence from two independent and heterogeneous samples," Ecological Economics, Elsevier, vol. 187(C).
    16. Dilshad Ahmad & Malika Kanwal & Muhammad Afzal, 2023. "Climate change effects on riverbank erosion Bait community flood-prone area of Punjab, Pakistan: an application of livelihood vulnerability index," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9387-9415, September.
    17. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    18. Mozhgan Moshtagh & Mohaddeseh Mohsenpour, 2019. "Community viewpoints about water crisis, conservation and recycling: a case study in Tehran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(6), pages 2721-2731, December.
    19. Codjoe, Samuel N.A. & Gough, Katherine V. & Wilby, Robert L. & Kasei, Raymond & Yankson, Paul W.K. & Amankwaa, Ebenezer F. & Abarike, Mercy A. & Atiglo, D. Yaw & Kayaga, Sam & Mensah, Peter & Nabilse,, 2020. "Impact of extreme weather conditions on healthcare provision in urban Ghana," Social Science & Medicine, Elsevier, vol. 258(C).
    20. Abu Reza Md. Towfiqul Islam & Md. Mijanur Rahman Bappi & Saeed Alqadhi & Ahmed Ali Bindajam & Javed Mallick & Swapan Talukdar, 2023. "Improvement of flood susceptibility mapping by introducing hybrid ensemble learning algorithms and high-resolution satellite imageries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 1-37, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:114:y:2022:i:1:d:10.1007_s11069-022-05416-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.