IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v387y1997i6630d10.1038_387275a0.html
   My bibliography  Save this article

Scour in large braided rivers and the recognition of sequence stratigraphic boundaries

Author

Listed:
  • James L. Best

    (University of Leeds)

  • Philip J. Ashworth

    (University of Leeds)

Abstract

Alluvial scour into shallow marine sediments may be caused by the incision of a river adjusting to a new base level1–4 following a fall in sea level. The identification of such erosion surfaces1–3 has therefore been pivotal in the reconstruction of past sea-level changes from ancient sedimentary sequences1–14. Here we report data from a study of the Jamuna river, Bangladesh, one of the world's largest modern braided rivers15, which illustrate that bed scour associated with channel confluences and bends alone can be substantial—as much as five times greater than the mean channel depth. Indeed, the basal erosion surfaces produced by such deep scours have characteristics similar to those of boundaries in some ancient sedimentary sequences that have been assumed to result from sea-level fall1–14, potentially leading to radically different interpretations of past variation in base level and climate. We suggest that, to discount unambiguously the influence of fluvial scour in ancient sediments, the erosive boundary should be greater than five times the mean channel depth and extend for distances greater than the floodplain width. Ideally, it should be traceable between different basins.

Suggested Citation

  • James L. Best & Philip J. Ashworth, 1997. "Scour in large braided rivers and the recognition of sequence stratigraphic boundaries," Nature, Nature, vol. 387(6630), pages 275-277, May.
  • Handle: RePEc:nat:nature:v:387:y:1997:i:6630:d:10.1038_387275a0
    DOI: 10.1038/387275a0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/387275a0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/387275a0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nafis Sadik Khan & Sujit Kumar Roy & Md. Touhidur Rahman Mazumder & Swapan Talukdar & Javed Mallick, 2022. "Assessing the long-term planform dynamics of Ganges–Jamuna confluence with the aid of remote sensing and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 883-906, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:387:y:1997:i:6630:d:10.1038_387275a0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.