IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v111y2022i2d10.1007_s11069-021-05103-y.html
   My bibliography  Save this article

Tsunami coastal hazard along the US East Coast from coseismic sources in the Açores convergence zone and the Caribbean arc areas

Author

Listed:
  • Stéphan T. Grilli

    (University of Rhode Island)

  • Maryam Mohammadpour

    (University of Rhode Island)

  • Lauren Schambach

    (University of Rhode Island)

  • Annette R. Grilli

    (University of Rhode Island)

Abstract

Tsunami coastal hazard is modeled along the US East Coast (USEC), at a coarse regional (450 m) resolution, from coseismic sources located in the Açores Convergence Zone (ACZ) and the Puerto Rico Trench (PRT)/Caribbean Arc areas. While earlier work only considered probable maximum tsunamis, here we parameterize and simulate 18 coseismic sources, with magnitude M8-9 and return periods $$\sim$$ ∼ 70–2000 year, using seismo-tectonic and historical data. The largest sources in the ACZ are repeats of the 1755 M8.6-9 Lisbon earthquake and tsunami; other sources are hypothetical. In the ACZ, due to the limited data on faults, each source is parameterized with a single fault plane, while in the PRT, coseismic sources are parameterized based on fault segmentation established during a 2019 USGS workshop of experts, using 10–26 SIFT subfault planes (Gica et al. in NOAA Tech. Memo., OAR PMEL-139, 2008). Tsunamis are simulated for each source using the fully nonlinear and dispersive model FUNWAVE-TVD, in two levels of nested grids. At the considered scales, dispersion is shown to affect tsunami propagation. Coastal hazard is quantified by four metrics computed at many save points ( $$\sim$$ ∼ 20–30 thousand) defined along the 5-m isobath (due to the coarse resolution), i.e., maximum (1) surface elevation, (2) current, (3) momentum force; and (4) travel time, representing flooding, navigation, structural, and evacuation hazards. Overall, the first three metrics are larger, the larger the source magnitude, and their alongshore variation shows similar patterns of higher/lower values, due to the shelf bathymetric control (refraction). The fourth metric mostly differs between sources from each area, but less so among sources from the same area; its inverse quantifies evacuation hazard. A 1–5 score is given to results for each metric, based on five intensity classes representing low, medium low, medium, high, and highest tsunami hazard. A novel tsunami intensity index is computed as a weighted average of these scores, allowing both a comparison among sources and a quantification of tsunami hazard as a function of their estimated return periods. In the most impacted areas of the USEC, the highest tsunami hazard in the 250–500-year return period range is commensurate with that posed by 100-year category 3–5 tropical cyclones, taking into account the larger current velocities and forces caused by tsunami waves. Results of this work could serve as a basis for a future regional Probabilistic Tsunami Hazard Analysis for the USEC, considering additional source types such as underwater landslides, volcanic flank collapse, and meteotsunamis, that were studied elsewhere.

Suggested Citation

  • Stéphan T. Grilli & Maryam Mohammadpour & Lauren Schambach & Annette R. Grilli, 2022. "Tsunami coastal hazard along the US East Coast from coseismic sources in the Açores convergence zone and the Caribbean arc areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1431-1478, March.
  • Handle: RePEc:spr:nathaz:v:111:y:2022:i:2:d:10.1007_s11069-021-05103-y
    DOI: 10.1007/s11069-021-05103-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-05103-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-05103-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Mercado & W. McCann, 1998. "Numerical Simulation of the 1918 Puerto Rico Tsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 18(1), pages 57-76, July.
    2. Stéphan T. Grilli & Annette R. Grilli & Eric David & Christophe Coulet, 2016. "Tsunami hazard assessment along the north shore of Hispaniola from far- and near-field Atlantic sources," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 777-810, June.
    3. Fatemeh Nemati & Stephan T. Grilli & Mansour Ioualalen & Laurie Boschetti & Christophe Larroque & Jenny Trevisan, 2019. "High-resolution coastal hazard assessment along the French Riviera from co-seismic tsunamis generated in the Ligurian fault system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 553-586, March.
    4. Annette Grilli & Malcolm L. Spaulding & Bryan A. Oakley & Chris Damon, 2017. "Mapping the coastal risk for the next century, including sea level rise and changes in the coastline: application to Charlestown RI, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 389-414, August.
    5. Stephan Grilli & Christopher O’Reilly & Jeffrey Harris & Tayebeh Bakhsh & Babak Tehranirad & Saeideh Banihashemi & James Kirby & Christopher Baxter & Tamara Eggeling & Gangfeng Ma & Fengyan Shi, 2015. "Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact around Ocean City, MD," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 705-746, March.
    6. Laurie Boschetti & Mansour Ioualalen & Fatemeh Nemati & Stephan Grilli & Jean-Xavier Dessa & Christophe Larroque, 2020. "Tsunami intensity scale based on wave amplitude and current applied to the French Riviera: the case study of local seismicity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 219-248, May.
    7. Eric Geist & Uri Brink & Matthew Gove, 2014. "A framework for the probabilistic analysis of meteotsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 123-142, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatemeh Nemati & Stephan T. Grilli & Mansour Ioualalen & Laurie Boschetti & Christophe Larroque & Jenny Trevisan, 2019. "High-resolution coastal hazard assessment along the French Riviera from co-seismic tsunamis generated in the Ligurian fault system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 553-586, March.
    2. Laurie Boschetti & Mansour Ioualalen & Fatemeh Nemati & Stephan Grilli & Jean-Xavier Dessa & Christophe Larroque, 2020. "Tsunami intensity scale based on wave amplitude and current applied to the French Riviera: the case study of local seismicity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 219-248, May.
    3. Petra Zemunik & Angelo Bonanno & Salvatore Mazzola & Giovanni Giacalone & Ignazio Fontana & Simona Genovese & Gualtiero Basilone & Julio Candela & Jadranka Šepić & Ivica Vilibić & Salvatore Aronica, 2021. "Observing meteotsunamis (“Marrobbio”) on the southwestern coast of Sicily," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1337-1363, March.
    4. Laurie Boschetti & Mansour Ioualalen, 2021. "Integrated tsunami intensity scale based on maxima of tsunami amplitude and induced current," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 815-839, January.
    5. Mandi C. Thran & Sascha Brune & Jody M. Webster & Dale Dominey-Howes & Daniel Harris, 2021. "Examining the impact of the Great Barrier Reef on tsunami propagation using numerical simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 347-388, August.
    6. Zhenzhu Meng & Jianyong Hu & Jinxin Zhang & Lijuan Zhang & Zhenxia Yuan, 2023. "The Momentum Transfer Mechanism of a Landslide Intruding a Body of Water," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    7. Fatemeh Nemati & Lucinda Leonard & Richard Thomson & Gwyn Lintern & Soroush Kouhi, 2023. "Numerical modeling of a potential landslide-generated tsunami in the southern Strait of Georgia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 2029-2054, June.
    8. Mohammadsadegh Nouri & Amin Rashidi & Masoud Montazeri Namin & Dan H. Shugar, 2023. "Submarine landslide tsunami hazard assessment for the western Makran based on a deterministic approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1117-1136, September.
    9. James Knighton & Luis Bastidas, 2015. "A proposed probabilistic seismic tsunami hazard analysis methodology," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 699-723, August.
    10. Soroush Kouhi & M. Reza Hashemi & Malcolm Spaulding & Tetsu Hara, 2022. "Modeling the impact of sea level rise on maximum water elevation during storm surge events: a closer look at coastal embayments," Climatic Change, Springer, vol. 171(3), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:111:y:2022:i:2:d:10.1007_s11069-021-05103-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.