IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v117y2023i2d10.1007_s11069-023-05854-w.html
   My bibliography  Save this article

Numerical modeling of a potential landslide-generated tsunami in the southern Strait of Georgia

Author

Listed:
  • Fatemeh Nemati

    (University of Victoria)

  • Lucinda Leonard

    (University of Victoria)

  • Richard Thomson

    (Fisheries and Oceans Canada)

  • Gwyn Lintern

    (Natural Resources Canada)

  • Soroush Kouhi

    (Ocean Networks Canada)

Abstract

We report results of numerical simulations of a potential subaerial landslide on the coast of Orcas Island and the resultant tsunami waves in the southern Strait of Georgia near the US/Canada border. A likely trigger is strong ground shaking during large earthquakes on the nearby Holocene active Skipjack Island fault zone. For a worst-case scenario, we assume a 0.17 $${\textrm{km}}^3$$ km 3 rigid subaerial failure on the steep northeast coast of the island, spanning the $$\sim$$ ∼ 5 km between previous landslide deposits on the adjacent seafloor. The landslide motion and resulting tsunami generation are modeled using the three-dimensional (3D) non-hydrostatics physics-based NHWAVE model. The simulated failure moves downslope with a peak velocity of 13.64ṁ/s and travels 732 m before coming to rest after 85 s in 75-m water depth. Tsunami propagation is then continued using the 2D fully nonlinear and dispersive Boussinesq wave model FUNWAVE-TVD in a succession of layered and nested grids. The modeling reveals susceptible locations, particularly as waves will arrive with little or no warning. In the near-source region, modeled waves have peak amplitudes of 15–20 m, current speeds of up to 10 m/s, and runup of up to 30 m. Smaller, but significant, wave amplitudes and runup occur throughout the region surrounding Orcas Island. In the tsunami propagation direction, runup reaches 7.5 m at Neptune Beach near Lummi Bay. Both initial and reflected waves cause significant runup (> 1.5 m) along much of the shoreline between Point Roberts and Lummi Bay.

Suggested Citation

  • Fatemeh Nemati & Lucinda Leonard & Richard Thomson & Gwyn Lintern & Soroush Kouhi, 2023. "Numerical modeling of a potential landslide-generated tsunami in the southern Strait of Georgia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 2029-2054, June.
  • Handle: RePEc:spr:nathaz:v:117:y:2023:i:2:d:10.1007_s11069-023-05854-w
    DOI: 10.1007/s11069-023-05854-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-05854-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-05854-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lucinda Leonard & Garry Rogers & Stéphane Mazzotti, 2014. "Tsunami hazard assessment of Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 237-274, January.
    2. Stephan Grilli & Christopher O’Reilly & Jeffrey Harris & Tayebeh Bakhsh & Babak Tehranirad & Saeideh Banihashemi & James Kirby & Christopher Baxter & Tamara Eggeling & Gangfeng Ma & Fengyan Shi, 2015. "Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact around Ocean City, MD," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 705-746, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatemeh Nemati & Stephan T. Grilli & Mansour Ioualalen & Laurie Boschetti & Christophe Larroque & Jenny Trevisan, 2019. "High-resolution coastal hazard assessment along the French Riviera from co-seismic tsunamis generated in the Ligurian fault system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 553-586, March.
    2. Tomoyuki Takabatake & Philippe St-Germain & Ioan Nistor & Jacob Stolle & Tomoya Shibayama, 2019. "Numerical modelling of coastal inundation from Cascadia Subduction Zone tsunamis and implications for coastal communities on western Vancouver Island, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(1), pages 267-291, August.
    3. Stéphan T. Grilli & Maryam Mohammadpour & Lauren Schambach & Annette R. Grilli, 2022. "Tsunami coastal hazard along the US East Coast from coseismic sources in the Açores convergence zone and the Caribbean arc areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1431-1478, March.
    4. Laurie Boschetti & Mansour Ioualalen & Fatemeh Nemati & Stephan Grilli & Jean-Xavier Dessa & Christophe Larroque, 2020. "Tsunami intensity scale based on wave amplitude and current applied to the French Riviera: the case study of local seismicity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 219-248, May.
    5. Valentin Nigg & Stephan Wohlwend & Michael Hilbe & Benjamin Bellwald & Stefano C. Fabbri & Gregory F. Souza & Florian Donau & Reto Grischott & Michael Strasser & Flavio S. Anselmetti, 2021. "A tsunamigenic delta collapse and its associated tsunami deposits in and around Lake Sils, Switzerland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1069-1103, June.
    6. Mandi C. Thran & Sascha Brune & Jody M. Webster & Dale Dominey-Howes & Daniel Harris, 2021. "Examining the impact of the Great Barrier Reef on tsunami propagation using numerical simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 347-388, August.
    7. O. V. Novikova & A. I. Gorshkov, 2022. "Local tsunamigenic sources in Greece, identified by pattern recognition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1335-1348, September.
    8. Mohammadsadegh Nouri & Amin Rashidi & Masoud Montazeri Namin & Dan H. Shugar, 2023. "Submarine landslide tsunami hazard assessment for the western Makran based on a deterministic approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1117-1136, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:117:y:2023:i:2:d:10.1007_s11069-023-05854-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.