IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v76y2015i2p705-746.html
   My bibliography  Save this article

Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact around Ocean City, MD

Author

Listed:
  • Stephan Grilli
  • Christopher O’Reilly
  • Jeffrey Harris
  • Tayebeh Bakhsh
  • Babak Tehranirad
  • Saeideh Banihashemi
  • James Kirby
  • Christopher Baxter
  • Tamara Eggeling
  • Gangfeng Ma
  • Fengyan Shi

Abstract

With support from the US National Tsunami Hazard Mitigation Program (NTHMP), the authors have been developing tsunami inundation maps for the upper US East Coast (USEC), using high-resolution numerical modeling. These maps are envelopes of maximum elevations, velocity, or momentum flux, caused by the probable maximum tsunamis identified in the Atlantic oceanic basin, including from far-field coseismic or volcanic sources, and near-field Submarine mass failures (SMFs); the latter are the object of this work. Despite clear field evidence of past large-scale SMFs within our area of interest, such as the Currituck slide complex, their magnitude, pre-failed geometry, volume, and mode of rupture are poorly known. A screening analysis based on the Monte Carlo simulations (MCS) identified areas for possible tsunamigenic SMF sources along the USEC, indicating an increased level of tsunami hazard north of Virginia, potentially surpassing the inundation generated by a typical 100-year hurricane storm surge in the region, as well as that from the most extreme far-field coseismic sources in the Atlantic; to the south, the MCS indicated that SMF tsunami hazard significantly decreased. Subsequent geotechnical and geological analyses delimited four high-risk areas along the upper USEC where the potential for large tsunamigenic SMFs, identified in the MCS, was realistic on the basis of field data (i.e., sediment nature and volume/availability). In the absence of accurate site-specific field data, following NTHMP’s recommendation, for the purpose of simulating tsunami hazard from SMF PMTs, we parameterized an extreme SMF source in each of the four areas as a so-called Currituck proxy, i.e., a SMF having the same volume, dimensions, and geometry as the historical SMF. In this paper, after briefly describing our state-of-the-art SMF tsunami modeling methodology, in a second part, we parameterize and model the historical Currituck event, including: (1) a new reconstruction of the SMF geometry and kinematics; (2) the simulation of the resulting tsunami source generation; and (3) the propagation of the tsunami source over the shelf to the coastline, in a series of nested grids. A sensitivity analysis to model and grid parameters is performed on this case, to ensure convergence and accuracy of tsunami simulation results. Then, we model in greater detail and discuss the impact of the historical Currituck tsunami event along the nearest coastline where its energy was focused, off of Virginia Beach and Norfolk, as well as near the mouth of the Chesapeake Bay; our results are in qualitative agreement with an earlier modeling study. In a third part, following the same methodology, we model tsunami generation and propagation for SMF Currituck proxy sources sited in the four identified areas of the USEC. Finally, as an illustration of our SMF tsunami hazard assessment work, we present detailed tsunami inundation maps, as well as some other products, for one of the most impacted and vulnerable areas, near and around Ocean City, MD. We find that coastal inundation from near-field SMF tsunamis may be comparable to that caused by the largest far-field sources. Because of their short propagation time and, hence, warning times, SMF tsunamis may pose one of the highest coastal hazards for many highly populated and vulnerable communities along the upper USEC, certainly comparable to that from extreme hurricanes. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Stephan Grilli & Christopher O’Reilly & Jeffrey Harris & Tayebeh Bakhsh & Babak Tehranirad & Saeideh Banihashemi & James Kirby & Christopher Baxter & Tamara Eggeling & Gangfeng Ma & Fengyan Shi, 2015. "Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact around Ocean City, MD," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 705-746, March.
  • Handle: RePEc:spr:nathaz:v:76:y:2015:i:2:p:705-746
    DOI: 10.1007/s11069-014-1522-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1522-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1522-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mandi C. Thran & Sascha Brune & Jody M. Webster & Dale Dominey-Howes & Daniel Harris, 2021. "Examining the impact of the Great Barrier Reef on tsunami propagation using numerical simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 347-388, August.
    2. Stéphan T. Grilli & Maryam Mohammadpour & Lauren Schambach & Annette R. Grilli, 2022. "Tsunami coastal hazard along the US East Coast from coseismic sources in the Açores convergence zone and the Caribbean arc areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1431-1478, March.
    3. Mohammadsadegh Nouri & Amin Rashidi & Masoud Montazeri Namin & Dan H. Shugar, 2023. "Submarine landslide tsunami hazard assessment for the western Makran based on a deterministic approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1117-1136, September.
    4. Fatemeh Nemati & Stephan T. Grilli & Mansour Ioualalen & Laurie Boschetti & Christophe Larroque & Jenny Trevisan, 2019. "High-resolution coastal hazard assessment along the French Riviera from co-seismic tsunamis generated in the Ligurian fault system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 553-586, March.
    5. Laurie Boschetti & Mansour Ioualalen & Fatemeh Nemati & Stephan Grilli & Jean-Xavier Dessa & Christophe Larroque, 2020. "Tsunami intensity scale based on wave amplitude and current applied to the French Riviera: the case study of local seismicity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 219-248, May.
    6. Fatemeh Nemati & Lucinda Leonard & Richard Thomson & Gwyn Lintern & Soroush Kouhi, 2023. "Numerical modeling of a potential landslide-generated tsunami in the southern Strait of Georgia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 2029-2054, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:76:y:2015:i:2:p:705-746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.