Flood hazard mapping in western Iran: assessment of deep learning vis-à-vis machine learning models
Author
Abstract
Suggested Citation
DOI: 10.1007/s11069-021-05098-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kris A. Johnson & Oliver E. J. Wing & Paul D. Bates & Joseph Fargione & Timm Kroeger & William D. Larson & Christopher C. Sampson & Andrew M. Smith, 2020. "A benefit–cost analysis of floodplain land acquisition for US flood damage reduction," Nature Sustainability, Nature, vol. 3(1), pages 56-62, January.
- Omid Rahmati & Hamid Reza Pourghasemi, 2017. "Identification of Critical Flood Prone Areas in Data-Scarce and Ungauged Regions: A Comparison of Three Data Mining Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1473-1487, March.
- Susan Athey, 2018. "The Impact of Machine Learning on Economics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 507-547, National Bureau of Economic Research, Inc.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vijendra Kumar & Hazi Md. Azamathulla & Kul Vaibhav Sharma & Darshan J. Mehta & Kiran Tota Maharaj, 2023. "The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management," Sustainability, MDPI, vol. 15(13), pages 1-33, July.
- Sukanta Malakar & Abhishek K. Rai & Arun K. Gupta, 2023. "Earthquake risk mapping in the Himalayas by integrated analytical hierarchy process, entropy with neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 951-975, March.
- Ahmed M. Youssef & Ali M. Mahdi & Hamid Reza Pourghasemi, 2023. "Optimal flood susceptibility model based on performance comparisons of LR, EGB, and RF algorithms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1071-1096, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
- Michael C. Knaus, 2021.
"A double machine learning approach to estimate the effects of musical practice on student’s skills,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
- Knaus, Michael C., 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," IZA Discussion Papers 11547, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," Papers 1805.10300, arXiv.org, revised Jan 2019.
- Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020.
"Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform,"
Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
- Christophe Croux & Julapa Jagtiani & Tarunsai Korivi & Milos Vulanovic, 2020. "Important Factors Determining Fintech Loan Default: Evidence from the LendingClub Consumer Platform," Working Papers 20-15, Federal Reserve Bank of Philadelphia.
- Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021.
"Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence,"
The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," IZA Discussion Papers 12039, Institute of Labor Economics (IZA).
- Lechner, Michael & Knaus, Michael C. & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," CEPR Discussion Papers 13402, C.E.P.R. Discussion Papers.
- Knaus, Michael C. & Lechner, Michael & anthony.strittmatter@unisg.ch, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Economics Working Paper Series 1817, University of St. Gallen, School of Economics and Political Science.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Papers 1810.13237, arXiv.org, revised Dec 2018.
- Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
- Susan C. Cook-Patton & C. Ronnie Drever & Bronson W. Griscom & Kelley Hamrick & Hamilton Hardman & Timm Kroeger & Pablo Pacheco & Shyla Raghav & Martha Stevenson & Chris Webb & Samantha Yeo & Peter W., 2021. "Protect, manage and then restore lands for climate mitigation," Nature Climate Change, Nature, vol. 11(12), pages 1027-1034, December.
- Sander Gerritsen & Mark Kattenberg & Sonny Kuijpers, 2019. "The impact of age at arrival on education and mental health," CPB Discussion Paper 389.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
- Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023.
"Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Eliya Cohen & Allon Hammer & Noam Koenigstein, 2020. "Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks," Papers 2011.07920, arXiv.org, revised Feb 2022.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Eliya Cohen & Allon Hammer & Noam Koenigstein, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," Post-Print emse-04624940, HAL.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Allon Hammer & Noam Koenigstein, 2021. "Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks," Bank of Israel Working Papers 2021.06, Bank of Israel.
- Panos Constantinides & Ola Henfridsson & Geoffrey G. Parker, 2018. "Introduction—Platforms and Infrastructures in the Digital Age," Information Systems Research, INFORMS, vol. 29(2), pages 381-400, June.
- Mara Lederman, 2018. "Comment on "The Impact of Machine Learning on Economics"," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 548-551, National Bureau of Economic Research, Inc.
- Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019.
"Economic Policy for Artificial Intelligence,"
Innovation Policy and the Economy, University of Chicago Press, vol. 19(1), pages 139-159.
- Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2018. "Economic Policy for Artificial Intelligence," NBER Chapters, in: Innovation Policy and the Economy, Volume 19, pages 139-159, National Bureau of Economic Research, Inc.
- Ajay K. Agrawal & Joshua S. Gans & Avi Goldfarb, 2018. "Economic Policy for Artificial Intelligence," NBER Working Papers 24690, National Bureau of Economic Research, Inc.
- Avi Goldfarb & Joshua Gans & Ajay Agrawal, 2018. "Economic Policy for Artificial Intelligence," Working Papers id:12798, eSocialSciences.
- Ajay K. Agrawal & Joshua S. Gans & Avi Goldfarb, 2018. "Economic Policy for Artificial Intelligence," Working Papers id:12823, eSocialSciences.
- Galdo, Virgilio & Li, Yue & Rama, Martin, 2021.
"Identifying urban areas by combining human judgment and machine learning: An application to India,"
Journal of Urban Economics, Elsevier, vol. 125(C).
- Galdo,Virgilio & Li,Yue-000316086 & Rama,Martin G., 2020. "Identifying Urban Areas by Combining Human Judgment and Machine Learning : An Application to India," Policy Research Working Paper Series 0160, The World Bank.
- Jurgita Bruneckiene & Robertas Jucevicius & Ineta Zykiene & Jonas Rapsikevicius & Mantas Lukauskas, 2019. "Assessment of Investment Attractiveness in European Countries by Artificial Neural Networks: What Competences are Needed to Make a Decision on Collective Well-Being?," Sustainability, MDPI, vol. 11(24), pages 1-23, December.
- Sander Gerritsen & Mark Kattenberg & Sonny Kuijpers, 2019. "The impact of age at arrival on education and mental health," CPB Discussion Paper 389, CPB Netherlands Bureau for Economic Policy Analysis.
- Stuart Gabriel & Matteo Iacoviello & Chandler Lutz, 2021.
"A Crisis of Missed Opportunities? Foreclosure Costs and Mortgage Modification During the Great Recession [Synthetic control methods for comparative case studies: Estimating the effect of California,"
The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 864-906.
- Stuart A. Gabriel & Matteo Iacoviello & Chandler Lutz, 2020. "A Crisis of Missed Opportunities? Foreclosure Costs and Mortgage Modification During the Great Recession," Finance and Economics Discussion Series 2020-053, Board of Governors of the Federal Reserve System (U.S.).
- Kéa Baret & Amélie Barbier-Gauchard & Théophilos Papadimitriou, 2021.
"Forecasting the Stability and Growth Pact compliance using Machine Learning,"
Working Papers of BETA
2021-01, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
- Kea Baret & Amélie Barbier-Gauchard & Theophilos Papadimitriou, 2023. "Forecasting the Stability and Growth Pact compliance using Machine Learning," Post-Print hal-03121966, HAL.
- Kea Baret & Amelie Barbier-Gauchard & Theophilos Papadimitriou, 2022. "Forecasting the Stability and Growth Pact compliance using Machine Learning," Working Papers 2022.11, International Network for Economic Research - INFER.
- repec:hal:wpaper:hal-03121966 is not listed on IDEAS
- Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.
- Longbing Cao, 2021. "AI in Finance: Challenges, Techniques and Opportunities," Papers 2107.09051, arXiv.org.
More about this item
Keywords
Deep learning; Random forest; Support vector machine; Robustness; Morphometric indices; Karkhe watershed;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:111:y:2022:i:2:d:10.1007_s11069-021-05098-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.