IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v99y2019i1d10.1007_s11069-019-03742-w.html
   My bibliography  Save this article

Disaster risk evaluation using factor analysis: a case study of Chinese regions

Author

Listed:
  • Ning Chen

    (Henan Polytechnic University)

  • Lu Chen

    (Beijing Wuzi University)

  • Chaosheng Tang

    (Henan Polytechnic University)

  • Zhengjiang Wu

    (Henan Polytechnic University)

  • An Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Regional risk to natural disasters is a critical multi-criteria decision-making (MCDM) problem in the literature due to the complicated and usually conflicting evaluation index system. Although a variety of MCDM methods can be applied to deal with the problem, the prior study primarily focused on the ranking of alternatives with little investigation on the influence of indicators. In this paper, an integrated approach is proposed by combining factor analysis and MCDM techniques to evaluate the thirty-one Chinese regions in terms of twenty-eight indicators. The advantage of factor analysis is demonstrated in extracting the dominant factors in an interpretable manner. Two commonly used MCDM techniques, namely TOPSIS and VIKOR, are then employed to evaluate the comprehensive risk of regions to natural hazards. The proposed approach not only provides the ranking of regions but also reveals the influence of indicators on the regional risk.

Suggested Citation

  • Ning Chen & Lu Chen & Chaosheng Tang & Zhengjiang Wu & An Chen, 2019. "Disaster risk evaluation using factor analysis: a case study of Chinese regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 321-335, October.
  • Handle: RePEc:spr:nathaz:v:99:y:2019:i:1:d:10.1007_s11069-019-03742-w
    DOI: 10.1007/s11069-019-03742-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03742-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03742-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaizhong Li & Shaohong Wu & Erfu Dai & Zhongchun Xu, 2012. "Flood loss analysis and quantitative risk assessment in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 737-760, September.
    2. Ransikarbum, Kasin & Mason, Scott J., 2016. "Goal programming-based post-disaster decision making for integrated relief distribution and early-stage network restoration," International Journal of Production Economics, Elsevier, vol. 182(C), pages 324-341.
    3. Yang Zhou & Ning Li & Wenxiang Wu & Jidong Wu, 2014. "Assessment of provincial social vulnerability to natural disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 2165-2186, April.
    4. Arash Malekian & Ali Azarnivand, 2016. "Application of Integrated Shannon’s Entropy and VIKOR Techniques in Prioritization of Flood Risk in the Shemshak Watershed, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 409-425, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    2. Yichen Lu & Chao Yang & Jun Yang, 2022. "A multi-objective humanitarian pickup and delivery vehicle routing problem with drones," Annals of Operations Research, Springer, vol. 319(1), pages 291-353, December.
    3. Wanying Zhong & Yue Wang, 2022. "A study on the spatial and temporal variation of urban integrated vulnerability in Southwest China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2855-2882, December.
    4. Zijun Qie & Lili Rong, 2017. "An integrated relative risk assessment model for urban disaster loss in view of disaster system theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 165-190, August.
    5. Seunghoo Jeong & D. K. Yoon, 2018. "Examining Vulnerability Factors to Natural Disasters with a Spatial Autoregressive Model: The Case of South Korea," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    6. Deliang Pang & Xinxin Zhang & Jian Zhang, 2024. "A Study to Assess the Performance of Disaster Management During the 2017 Yongji County Flood in China," Public Organization Review, Springer, vol. 24(3), pages 775-790, September.
    7. Ghaneshvar Ramineni & Nafiseh Ghorbani-Renani & Kash Barker & Andrés D. González & Talayeh Razzaghi & Sridhar Radhakrishnan, 2023. "Machine learning approaches to modeling interdependent network restoration time," Environment Systems and Decisions, Springer, vol. 43(1), pages 22-35, March.
    8. Rabin K. Jana & Dinesh K. Sharma & Peeyush Mehta, 2022. "A probabilistic fuzzy goal programming model for managing the supply of emergency relief materials," Annals of Operations Research, Springer, vol. 319(1), pages 149-172, December.
    9. Peiyu Zhang & Yankui Liu & Guoqing Yang & Guoqing Zhang, 2022. "A multi-objective distributionally robust model for sustainable last mile relief network design problem," Annals of Operations Research, Springer, vol. 309(2), pages 689-730, February.
    10. Qian Wang & Qi-peng Zhang & Yang-yang Liu & Lin-jing Tong & Yan-zhen Zhang & Xiao-yu Li & Jian-long Li, 2020. "Characterizing the spatial distribution of typical natural disaster vulnerability in China from 2010 to 2017," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 3-15, January.
    11. Nastaran Chitsaz & Ali Azarnivand, 2017. "Water Scarcity Management in Arid Regions Based on an Extended Multiple Criteria Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 233-250, January.
    12. Jafarzadeh-Ghoushchi, Saeid & Asghari, Mohammad & Mardani, Abbas & Simic, Vladimir & Tirkolaee, Erfan Babaee, 2023. "Designing an efficient humanitarian supply chain network during an emergency: A scenario-based multi-objective model," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    13. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    14. Feifeng Cao & Huangyuan Wang & Conglin Zhang & Weibo Kong, 2023. "Social Vulnerability Evaluation of Natural Disasters and Its Spatiotemporal Evolution in Zhejiang Province, China," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    15. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency relief routing models for injured victims considering equity and priority," Annals of Operations Research, Springer, vol. 283(1), pages 1573-1606, December.
    16. Rodríguez-Espíndola, Oscar & Albores, Pavel & Brewster, Christopher, 2018. "Dynamic formulation for humanitarian response operations incorporating multiple organisations," International Journal of Production Economics, Elsevier, vol. 204(C), pages 83-98.
    17. Md Shahinoor Rahman & Liping Di, 2020. "A Systematic Review on Case Studies of Remote-Sensing-Based Flood Crop Loss Assessment," Agriculture, MDPI, vol. 10(4), pages 1-30, April.
    18. Zhongping Zeng & Yujia Li & Jinyu Lan & Abdur Rahim Hamidi, 2021. "Utilizing User-Generated Content and GIS for Flood Susceptibility Modeling in Mountainous Areas: A Case Study of Jian City in China," Sustainability, MDPI, vol. 13(12), pages 1-18, June.
    19. Ziyue Zeng & Guoqiang Tang & Di Long & Chao Zeng & Meihong Ma & Yang Hong & Hui Xu & Jing Xu, 2016. "A cascading flash flood guidance system: development and application in Yunnan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2071-2093, December.
    20. Ali Azarnivand & Mohammad Ebrahim Banihabib, 2017. "A Multi-level Strategic Group Decision Making for Understanding and Analysis of Sustainable Watershed Planning in Response to Environmental Perplexities," Group Decision and Negotiation, Springer, vol. 26(3), pages 629-648, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:99:y:2019:i:1:d:10.1007_s11069-019-03742-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.