IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v109y2021i3d10.1007_s11069-021-04915-2.html
   My bibliography  Save this article

Spatial and temporal variation of precipitation during 1960–2015 in Northwestern China

Author

Listed:
  • Hui Li

    (Xi’an University of Science and Technology)

  • Yanyan Gao

    (Chang’an University)

  • Enke Hou

    (Xi’an University of Science and Technology)

Abstract

Under the global climate change, research on the response characteristic of precipitation to climate change and its variation trend is of great significance. By employing the empirical orthogonal function (EOF), the TPFW-MK test and the PCD and PCP method, the multiple-time scale variability and spatial distribution of precipitation in different climate zones are studied by the monthly precipitation data from 122 meteorological stations in Northwestern China (NWC) during 1960–2015. The results indicated that the annual precipitation in 68% of the stations exhibited upward trends and the average annual precipitation increased at 2.6 mm per decade from 1960 to 2015. Opposite variation trends of annual precipitation were detected in different climate zones, significant positive trends in arid and semiarid zones, but negative trends in humid and semi-humid zones. Based on the Z-statistics by TPFW-MK test, winter precipitation exhibited a generally increasing trend, but the variation of summer precipitation showed remarkable regional differences. Mutation test indicated that middle 1980s was the major mutation point of precipitation series. According to the CDF plots, the proportion of precipitation between 0 and 300 mm decreased, while the proportion of precipitation more than 700 mm increased. The EOF analyses showed that the spatial distribution of precipitation had three typical modes, whole area consistent type, east–west opposite type and north–south opposite type. The greatest proportion of the whole area pattern revealed that the climate condition was controlled by some common factors despite the different variation trends. Trend analyses of PCD and PCP indicated that the inter-annual precipitation in about 77.3% of the stations had a high concentration degree, the unevenness of inter-annual precipitation distribution increased in humid and semi-humid zones and decreased in arid and semiarid zones, which was opposite to the variation trends of annual precipitation. Besides, the concentrate period of inter-annual precipitation had advanced over the last decades. The results will provide reliable references for addressing climate change, protecting ecological environment and preventing meteorological disasters.

Suggested Citation

  • Hui Li & Yanyan Gao & Enke Hou, 2021. "Spatial and temporal variation of precipitation during 1960–2015 in Northwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2173-2196, December.
  • Handle: RePEc:spr:nathaz:v:109:y:2021:i:3:d:10.1007_s11069-021-04915-2
    DOI: 10.1007/s11069-021-04915-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04915-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04915-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jagadish Patra & A. Mishra & R. Singh & N. Raghuwanshi, 2012. "Detecting rainfall trends in twentieth century (1871–2006) over Orissa State, India," Climatic Change, Springer, vol. 111(3), pages 801-817, April.
    2. B. Yue & Z. Shi & N. Fang, 2014. "Evaluation of rainfall erosivity and its temporal variation in the Yanhe River catchment of the Chinese Loess Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 585-602, November.
    3. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    2. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    3. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    4. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    5. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    6. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    7. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    8. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    9. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    10. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    11. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    12. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    13. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    14. Minghao Bai & Shenbei Zhou & Ting Tang, 2022. "A Reconstruction of Irrigated Cropland Extent in China from 2000 to 2019 Using the Synergy of Statistics and Satellite-Based Datasets," Land, MDPI, vol. 11(10), pages 1-27, September.
    15. Yang, Wenjie & Li, Yanhang & Jia, Bingli & Liu, Lei & Yuan, Aijing & Liu, Jinshan & Qiu, Weihong, 2024. "Optimized fertilization based on fallow season precipitation and the Nutrient Expert system for dryland wheat reduced environmental risks and increased economic benefits," Agricultural Water Management, Elsevier, vol. 291(C).
    16. Wang, Guangshuai & Liang, Yueping & Zhang, Qian & Jha, Shiva K. & Gao, Yang & Shen, Xiaojun & Sun, Jingsheng & Duan, Aiwang, 2016. "Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 163(C), pages 403-407.
    17. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CIRED Working Papers halshs-02080285, HAL.
    18. Cao, Meng & Chen, Min & Liu, Ji & Liu, Yanli, 2022. "Assessing the performance of satellite soil moisture on agricultural drought monitoring in the North China Plain," Agricultural Water Management, Elsevier, vol. 263(C).
    19. Xu, Zhihao & Yin, Xinan & Yang, Zhifeng & Cai, Yanpeng & Sun, Tao, 2016. "New model to assessing nutrient assimilative capacity in plant-dominated lakes: Considering ecological effects of hydrological changes," Ecological Modelling, Elsevier, vol. 332(C), pages 94-102.
    20. Jian, Yuqing & Liu, Zhengjia & Gong, Jianzhou, 2022. "Response of landscape dynamics to socio-economic development and biophysical setting across the farming-pastoral ecotone of northern China and its implications for regional sustainable land management," Land Use Policy, Elsevier, vol. 122(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:109:y:2021:i:3:d:10.1007_s11069-021-04915-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.