IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i20p13478-d945901.html
   My bibliography  Save this article

An Optimized Damping Grey Population Prediction Model and Its Application on China’s Population Structure Analysis

Author

Listed:
  • Xiaojun Guo

    (School of Science, Nantong University, Nantong 226019, China)

  • Rui Zhang

    (School of Science, Nantong University, Nantong 226019, China)

  • Houxue Shen

    (School of Science, Nantong University, Nantong 226019, China)

  • Yingjie Yang

    (Institute of Artificial Intelligence, De Montfort University, Leicester LE1 9BH, UK)

Abstract

Population, resources and environment constitute an interacting and interdependent whole. Only by scientifically forecasting and accurately grasping future population trends can we use limited resources to promote the sustainable development of society. Because the population system is affected by many complex factors and the structural relations among these factors are complex, it can be regarded as a typical dynamic grey system. This paper introduces the damping accumulated operator to construct the grey population prediction model based on the nonlinear grey Bernoulli model in order to describe the evolution law of the population system more accurately. The new operator can give full play to the principle of new information first and further enhance the ability of the model to capture the dynamic changes of the original data. A whale optimization algorithm was used to optimize the model parameters and build a smooth prediction curve. Through three practical cases related to the size and structure of the Chinese population, the comparison with other grey prediction models shows that the fitting and prediction accuracy of the damping accumulated–nonlinear grey Bernoulli model is higher than that of the traditional grey prediction model. At the same time, the damping accumulated operator can weaken the randomness of the original data sequence, reduce the influence of external interference factors, and enhance the robustness of the model. This paper proves that the new method is simple and effective for population prediction, which can not only grasp the future population change trend more accurately but also further expand the application range of the grey prediction model.

Suggested Citation

  • Xiaojun Guo & Rui Zhang & Houxue Shen & Yingjie Yang, 2022. "An Optimized Damping Grey Population Prediction Model and Its Application on China’s Population Structure Analysis," IJERPH, MDPI, vol. 19(20), pages 1-25, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:20:p:13478-:d:945901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/20/13478/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/20/13478/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lixuan Chen & Tianyu Mu & Xiuting Li & Jichang Dong, 2022. "Population Prediction of Chinese Prefecture-Level Cities Based on Multiple Models," Sustainability, MDPI, vol. 14(8), pages 1-23, April.
    2. Jianzhou Wang & Pei Du, 2021. "Quarterly PM2.5 prediction using a novel seasonal grey model and its further application in health effects and economic loss assessment: evidences from Shanghai and Tianjin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 889-909, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Siwei & Xiao, Xinping & Ding, Qi, 2024. "A novel fractional system grey prediction model with dynamic delay effect for evaluating the state of health of lithium battery," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haowei Sun & Jinghan Ma & Li Wang, 2023. "Changes in per capita wheat production in China in the context of climate change and population growth," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(3), pages 597-612, June.
    2. Xu, Yan & Yu, Qi & Du, Pei & Wang, Jianzhou, 2024. "A paradigm shift in solar energy forecasting: A novel two-phase model for monthly residential consumption," Energy, Elsevier, vol. 305(C).
    3. Xiong, Xin & Hu, Xi & Tian, Tian & Guo, Huan & Liao, Han, 2022. "A novel Optimized initial condition and Seasonal division based Grey Seasonal Variation Index model for hydropower generation," Applied Energy, Elsevier, vol. 328(C).
    4. Yilin Zhao & Feng He & Ying Feng, 2022. "Research on the Current Situation of Employment Mobility and Retention Rate Predictions of “Double First-Class” University Graduates Based on the Random Forest and BP Neural Network Models," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    5. Sebal Oo & Makoto Tsukai, 2022. "Long-Term Impact of Interregional Migrants on Population Prediction," Sustainability, MDPI, vol. 14(11), pages 1-21, May.
    6. Du, Pei & Guo, Ju'e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2022. "A novel two-stage seasonal grey model for residential electricity consumption forecasting," Energy, Elsevier, vol. 258(C).
    7. Jingru Chen & Hengyuan Zeng & Qiang Gao, 2023. "Using the Sustainable Development Capacity of Key Counties to Guide Rural Revitalization in China," IJERPH, MDPI, vol. 20(5), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:20:p:13478-:d:945901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.