IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v110y2022i3d10.1007_s11069-021-05009-9.html
   My bibliography  Save this article

Numerical analysis of meteotsunamis in the Northeastern Gulf of Mexico

Author

Listed:
  • Wei Cheng

    (Texas A&M University at Galveston)

  • Juan Horrillo

    (Texas A&M University at Galveston)

  • Richards Sunny

    (Texas A&M University at Galveston)

Abstract

Although relatively rare, meteotsunamis are capable of causing coastal infrastructure damage and casualties. Analyses of water level and meteorological data in the U.S. show that meteotsunamis occur more frequently than expected, and therefore, it is important to include meteotsunami assessment in coastal hazard mitigation efforts. In this study, we conducted numerical experiments to investigate the generation and propagation of meteotsunami waves and assessed hazards on a broad scale in the northeastern Gulf of Mexico (GOM). The numerical experiments used a simple 2D depth-averaged hydrostatic shallow water model forced by an idealized atmospheric pressure disturbance on a set of trajectories and directions (1260 runs) covering the whole Florida GOM shelf. Results show that bathymetry pattern has control over the direction of major meteotsunami waves and that forward speed has more influence on maximum water level than the trajectory location. Maximum water level anomaly tracking and Proudman length analysis both demonstrate that Florida’s wide and long straight continental shelf in the northeastern GOM is favorable for producing large meteotsunamis. Statistical analysis indicates that pressure disturbances coming from southwest–west direction result in higher water level near south Florida region, while east direction in the Florida panhandle region. The forward speed distribution shows that 20–25 m/s have the most potential. These results can help identify vulnerable coastal regions and pressure disturbance scenarios that most likely generate higher meteotsunami waves.

Suggested Citation

  • Wei Cheng & Juan Horrillo & Richards Sunny, 2022. "Numerical analysis of meteotsunamis in the Northeastern Gulf of Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1719-1734, February.
  • Handle: RePEc:spr:nathaz:v:110:y:2022:i:3:d:10.1007_s11069-021-05009-9
    DOI: 10.1007/s11069-021-05009-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-05009-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-05009-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maitane Olabarrieta & Arnoldo Valle-Levinson & Christopher J. Martinez & Charitha Pattiaratchi & Luming Shi, 2017. "Meteotsunamis in the northeastern Gulf of Mexico and their possible link to El Niño Southern Oscillation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1325-1346, September.
    2. I. Vilibić & K. Horvath & N. Strelec Mahović & S. Monserrat & M. Marcos & Á. Amores & I. Fine, 2014. "Atmospheric processes responsible for generation of the 2008 Boothbay meteotsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 25-53, October.
    3. Jihwan Kim & Rachid Omira, 2021. "The 6–7 July 2010 meteotsunami along the coast of Portugal: insights from data analysis and numerical modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1397-1419, March.
    4. Luming Shi & Maitane Olabarrieta & David S. Nolan & John C. Warner, 2020. "Tropical cyclone rainbands can trigger meteotsunamis," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    5. P. Whitmore & B. Knight, 2014. "Meteotsunami forecasting: sensitivities demonstrated by the 2008 Boothbay, Maine, event," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 11-23, October.
    6. Ivica Vilibić & Sebastian Monserrat & Alexander Rabinovich, 2014. "Meteorological tsunamis on the US East Coast and in other regions of the World Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 1-9, October.
    7. Jadranka Šepić & Alexander Rabinovich, 2014. "Meteotsunami in the Great Lakes and on the Atlantic coast of the United States generated by the “derecho” of June 29–30, 2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 75-107, October.
    8. Alex Sheremet & Uriah Gravois & Victor Shrira, 2016. "Observations of meteotsunami on the Louisiana shelf: a lone soliton with a soliton pack," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 471-492, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petra Zemunik & Angelo Bonanno & Salvatore Mazzola & Giovanni Giacalone & Ignazio Fontana & Simona Genovese & Gualtiero Basilone & Julio Candela & Jadranka Šepić & Ivica Vilibić & Salvatore Aronica, 2021. "Observing meteotsunamis (“Marrobbio”) on the southwestern coast of Sicily," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1337-1363, March.
    2. Viacheslav K. Gusiakov, 2021. "Meteotsunamis at global scale: problems of event identification, parameterization and cataloguing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1105-1123, March.
    3. Ivica Vilibić & Cléa Denamiel & Petra Zemunik & Sebastian Monserrat, 2021. "The Mediterranean and Black Sea meteotsunamis: an overview," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1223-1267, March.
    4. Mohammad Hossein Kazeminezhad & Ivica Vilibić & Cléa Denamiel & Parvin Ghafarian & Samaneh Negah, 2021. "Weather radar and ancillary observations of the convective system causing the northern Persian Gulf meteotsunami on 19 March 2017," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1747-1769, March.
    5. Mohammad Heidarzadeh & Alexander B. Rabinovich, 2021. "Combined hazard of typhoon-generated meteorological tsunamis and storm surges along the coast of Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1639-1672, March.
    6. Michael Angove & Lewis Kozlosky & Philip Chu & Greg Dusek & Greg Mann & Eric Anderson & James Gridley & Diego Arcas & Vasily Titov & Marie Eble & Kimberly McMahon & Brian Hirsch & Walt Zaleski, 2021. "Addressing the meteotsunami risk in the united states," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1467-1487, March.
    7. Li-Ching Lin & Chin H. Wu, 2021. "Unexpected meteotsunamis prior to Typhoon Wipha and Typhoon Neoguri," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1673-1686, March.
    8. Ivica Vilibić & Alexander B. Rabinovich & Eric J. Anderson, 2021. "Special issue on the global perspective on meteotsunami science: editorial," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1087-1104, March.
    9. Cheng-Ku Yu & Che-Yu Lin & Chi-Hang Pun, 2023. "Origin of outer tropical cyclone rainbands," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Emile Okal & Johan Visser & Coenraad Beer, 2014. "The Dwarskersbos, South Africa local tsunami of August 27, 1969: field survey and simulation as a meteorological event," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 251-268, October.
    11. Emile A. Okal, 2021. "On the possibility of seismic recording of meteotsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1125-1147, March.
    12. Yang Wang & Xiaojing Niu & Zhengdong Yu & Xingyu Gao, 2021. "Numerical study on a possible cause of the ‘strange tide’ in the coastal area of Jiangsu Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1687-1701, March.
    13. Alex Sheremet & Uriah Gravois & Victor Shrira, 2016. "Observations of meteotsunami on the Louisiana shelf: a lone soliton with a soliton pack," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 471-492, November.
    14. Kristian Horvath & Ivica Vilibić, 2014. "Atmospheric mesoscale conditions during the Boothbay meteotsunami: a numerical sensitivity study using a high-resolution mesoscale model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 55-74, October.
    15. Iael Perez & Walter Dragani, 2021. "Numerical study of meteotsunamis driven by atmospheric gravity waves in coastal waters of Buenos Aires Province, Argentina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1599-1618, March.
    16. Alexander B. Rabinovich & Jadranka Šepić & Richard E. Thomson, 2021. "The meteorological tsunami of 1 November 2010 in the southern Strait of Georgia: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1503-1544, March.
    17. Rogério Neder Candella & Carlos Eduardo Salles Araujo, 2021. "Meteotsunamis in Brazil: an overview of known occurrences from 1977 to 2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1563-1579, March.
    18. Andrew M. Sibley & Dave Cox & David R. Tappin, 2021. "Convective rear-flank downdraft as driver for meteotsunami along English Channel and North Sea coasts 28–29 May 2017," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1445-1465, March.
    19. Jihwan Kim & Byoung-Ju Choi & Rachid Omira, 2022. "On the Greenspan resurgence of meteotsunamis in the Yellow Sea—insights from the newly discovered 11–12 June 2009 event," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1323-1340, November.
    20. B. Mourre & A. Santana & A. Buils & L. Gautreau & M. Ličer & A. Jansà & B. Casas & B. Amengual & J. Tintoré, 2021. "On the potential of ensemble forecasting for the prediction of meteotsunamis in the Balearic Islands: sensitivity to atmospheric model parameterizations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1315-1336, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:110:y:2022:i:3:d:10.1007_s11069-021-05009-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.