IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v105y2021i1d10.1007_s11069-020-04318-9.html
   My bibliography  Save this article

On the use of synthetic tropical cyclones and hypothetical events for storm surge assessment under climate change

Author

Listed:
  • Pablo Ruiz-Salcines

    (Universidad Nacional Autónoma de México
    Universidad Nacional Autónoma de México)

  • Christian M. Appendini

    (Universidad Nacional Autónoma de México
    Laboratorio Nacional de Resiliencia Costera, Laboratorios Nacionales CONACYT)

  • Paulo Salles

    (Universidad Nacional Autónoma de México
    Laboratorio Nacional de Resiliencia Costera, Laboratorios Nacionales CONACYT)

  • Wilmer Rey

    (Universidad Nacional Autónoma de México
    Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe: Cartagena de Indias)

  • Jonathan L. Vigh

    (National Center for Atmospheric Research)

Abstract

This study presents a new approach to assess storm surge risk from tropical cyclones under climate change by direct calculation of the local flood levels using a limited number of events with an associated probability. The approach is based on the near-worst-case flood scenario, associated with a known tropical cyclone wind intensity probability (return period). We applied the method for the locality of Manzanillo, Colima, Mexico, using synthetic tropical cyclones derived from six different general circulation models for the present and future climates under the Representative Concentration Pathway 8.5. The synthetic events allowed the characterization of the wind intensity for the present and future climates for a given return period, as well as to determine the key tropical cyclones parameters related to storm surge. For Hurricane Patricia (2015), the strongest tropical cyclone to impact the region, we determined that its 95 m/s winds have a return period above 4000 years for the present climate and 198 years in a future climate scenario. Using Hurricane Patricia’s peak wind intensity, we created hypothetical events representing all possible approaches of tropical cyclones (211 events) to Manzanillo. We forced a hydrodynamic model with the hypothetical events over a mesh created with LiDAR-derived topography and then calculated the storm surge to create the near-worst-case flood scenario based on the maximum envelopes of water (MEOWs) and the maximum of MEOWs. Using those results, we created flood risk maps at city block level based on the combination of flood hazard and socioeconomic vulnerability maps. The presented method provides a tool for tropical cyclones storm surge hazard and risk assessment by generating near-worst-case flood maps under projected climates using a limited set of hypothetical events.

Suggested Citation

  • Pablo Ruiz-Salcines & Christian M. Appendini & Paulo Salles & Wilmer Rey & Jonathan L. Vigh, 2021. "On the use of synthetic tropical cyclones and hypothetical events for storm surge assessment under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 431-459, January.
  • Handle: RePEc:spr:nathaz:v:105:y:2021:i:1:d:10.1007_s11069-020-04318-9
    DOI: 10.1007/s11069-020-04318-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04318-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04318-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kerry Emanuel, 2005. "Increasing destructiveness of tropical cyclones over the past 30 years," Nature, Nature, vol. 436(7051), pages 686-688, August.
    2. Christian M. Appendini & Rafael Meza-Padilla & Said Abud-Russell & Sébastien Proust & Roberto E. Barrios & Fernando Secaira-Fajardo, 2019. "Effect of climate change over landfalling hurricanes at the Yucatan Peninsula," Climatic Change, Springer, vol. 157(3), pages 469-482, December.
    3. James B. Elsner & James P. Kossin & Thomas H. Jagger, 2008. "The increasing intensity of the strongest tropical cyclones," Nature, Nature, vol. 455(7209), pages 92-95, September.
    4. Nam-Young Kang & James B. Elsner, 2015. "Trade-off between intensity and frequency of global tropical cyclones," Nature Climate Change, Nature, vol. 5(7), pages 661-664, July.
    5. Wilmer Rey & E. Tonatiuh Mendoza & Paulo Salles & Keqi Zhang & Yi-Chen Teng & Miguel A. Trejo-Rangel & Gemma L. Franklin, 2019. "Hurricane flood risk assessment for the Yucatan and Campeche State coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1041-1065, April.
    6. S. Balica & N. Wright & F. Meulen, 2012. "A flood vulnerability index for coastal cities and its use in assessing climate change impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 73-105, October.
    7. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    8. Ning Lin & Kerry Emanuel & Michael Oppenheimer & Erik Vanmarcke, 2012. "Physically based assessment of hurricane surge threat under climate change," Nature Climate Change, Nature, vol. 2(6), pages 462-467, June.
    9. Björn Kriesche & Helga Weindl & Anselm Smolka & Volker Schmidt, 2014. "Stochastic simulation model for tropical cyclone tracks, with special emphasis on landfall behavior," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 335-353, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Austin Becker & Michele Acciaro & Regina Asariotis & Edgard Cabrera & Laurent Cretegny & Philippe Crist & Miguel Esteban & Andrew Mather & Steve Messner & Susumu Naruse & Adolf Ng & Stefan Rahmstorf &, 2013. "A note on climate change adaptation for seaports: a challenge for global ports, a challenge for global society," Climatic Change, Springer, vol. 120(4), pages 683-695, October.
    2. Ilan Noy, 2017. "To Leave or Not to Leave? Climate Change, Exit, and Voice on a Pacific Island," CESifo Economic Studies, CESifo Group, vol. 63(4), pages 403-420.
    3. Sigridur Bjarnadottir & Yue Li & Mark Stewart, 2011. "Social vulnerability index for coastal communities at risk to hurricane hazard and a changing climate," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 1055-1075, November.
    4. Karthik Balaguru & David R. Judi & L. Ruby Leung, 2016. "Future hurricane storm surge risk for the U.S. gulf and Florida coasts based on projections of thermodynamic potential intensity," Climatic Change, Springer, vol. 138(1), pages 99-110, September.
    5. Pugatch, Todd, 2019. "Tropical storms and mortality under climate change," World Development, Elsevier, vol. 117(C), pages 172-182.
    6. Xiaotong Sui & Mingzhao Hu & Haoyun Wang & Lingdi Zhao, 2023. "Improved elasticity estimation model for typhoon storm surge losses in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2363-2381, March.
    7. S. Niggol Seo & Laura A. Bakkensen, 2016. "Did adaptation strategies work? High fatalities from tropical cyclones in the North Indian Ocean and future vulnerability under global warming," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1341-1355, June.
    8. Chang, Carolyn W. & Wang, Yu-Jen & Yu, Min-Teh, 2020. "Catastrophe bond spread and hurricane arrival frequency," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    9. Ilan Noy, 2017. "To Leave or Not to Leave? Climate Change, Exit, and Voice on a Pacific Island," CESifo Economic Studies, CESifo, vol. 63(4), pages 403-420.
    10. S. Seo, 2014. "Estimating Tropical Cyclone Damages Under Climate Change in the Southern Hemisphere Using Reported Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 473-490, July.
    11. Vitor Baccarin Zanetti & Wilson Cabral De Sousa Junior & Débora M. De Freitas, 2016. "A Climate Change Vulnerability Index and Case Study in a Brazilian Coastal City," Sustainability, MDPI, vol. 8(8), pages 1-12, August.
    12. Davlasheridze, Meri & Fisher-Vanden, Karen & Allen Klaiber, H., 2017. "The effects of adaptation measures on hurricane induced property losses: Which FEMA investments have the highest returns?," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 93-114.
    13. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    14. Roshanak Nateghi & Seth D. Guikema & Yue (Grace) Wu & C. Bayan Bruss, 2016. "Critical Assessment of the Foundations of Power Transmission and Distribution Reliability Metrics and Standards," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 4-15, January.
    15. Lee, Ji Yun & Ellingwood, Bruce R., 2017. "A decision model for intergenerational life-cycle risk assessment of civil infrastructure exposed to hurricanes under climate change," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 100-107.
    16. Wilmer Rey & E. Tonatiuh Mendoza & Paulo Salles & Keqi Zhang & Yi-Chen Teng & Miguel A. Trejo-Rangel & Gemma L. Franklin, 2019. "Hurricane flood risk assessment for the Yucatan and Campeche State coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1041-1065, April.
    17. Jennifer Irish & Alison Sleath & Mary Cialone & Thomas Knutson & Robert Jensen, 2014. "Simulations of Hurricane Katrina (2005) under sea level and climate conditions for 1900," Climatic Change, Springer, vol. 122(4), pages 635-649, February.
    18. Akter, Sonia & Mallick, Bishawjit, 2013. "An empirical investigation of socio-economic resilience to natural disasters," MPRA Paper 50375, University Library of Munich, Germany.
    19. María Ibarrarán & Matthias Ruth & Sanjana Ahmad & Marisa London, 2009. "Climate change and natural disasters: macroeconomic performance and distributional impacts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 11(3), pages 549-569, June.
    20. Kerstin Krellenberg & Juliane Welz, 2017. "Assessing Urban Vulnerability in the Context of Flood and Heat Hazard: Pathways and Challenges for Indicator-Based Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 132(2), pages 709-731, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:105:y:2021:i:1:d:10.1007_s11069-020-04318-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.