IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v103y2020i1d10.1007_s11069-020-04017-5.html
   My bibliography  Save this article

Adapting wastewater treatment plants to sea level rise: learning from land subsidence in Tohoku, Japan

Author

Listed:
  • Anh Cao

    (The University of Tokyo)

  • Miguel Esteban

    (Waseda University)

  • Takashi Mino

    (The University of Tokyo)

Abstract

Past studies have projected that global mean sea levels could be up to between 0.98 and 2.92 m higher by the year 2100 than pre-industrial levels, which could seriously affect wastewater treatment plants (WWTPs). However, there is currently a lack of guidelines regarding how these types of installations can adapt to sea level rise (SLR). The present research analyzes how SLR might affect WWTPs that are situated near the coastline and how they can adapt by using experiences of land subsidence as a proxy. The Tohoku region in northern Japan experienced severe land subsidence (up to − 1.14 m in Ishinomaki city) after the 2011 Tohoku earthquake. The authors conducted in-depth interviews with staff from three significant WWTPs in the area to elucidate the effects that land subsidence had on their operations and how they could adapt to an increase in land subsidence or SLR. The results suggest that for land subsidence of − 0.53 m (equivalent to a SLR of + 0.53 m), the surveyed WWTPs were considered to be able to operate normally, without undertaking any major adaptation actions. Critical levels that influence the vulnerability and adaptation strategies of WWTPs to SLR were identified. These critical levels can help differentiate between the three types of SLR-induced flooding that can affect the plants, namely coastal flooding, discharge flooding and groundwater inundation. WWTPs utilizing combined sewage systems may face more difficulties when adapting to SLR. Finally, the authors proposed limit-state adaptation pathways for WWTPs situated in low-lying coastal areas, including a sequence of possible countermeasures and a timeline for specific actions to take place.

Suggested Citation

  • Anh Cao & Miguel Esteban & Takashi Mino, 2020. "Adapting wastewater treatment plants to sea level rise: learning from land subsidence in Tohoku, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 885-902, August.
  • Handle: RePEc:spr:nathaz:v:103:y:2020:i:1:d:10.1007_s11069-020-04017-5
    DOI: 10.1007/s11069-020-04017-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04017-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04017-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beatriz Azevedo de Almeida & Ali Mostafavi, 2016. "Resilience of Infrastructure Systems to Sea-Level Rise in Coastal Areas: Impacts, Adaptation Measures, and Implementation Challenges," Sustainability, MDPI, vol. 8(11), pages 1-28, November.
    2. Marjolijn Haasnoot & Hans Middelkoop & Astrid Offermans & Eelco Beek & Willem Deursen, 2012. "Exploring pathways for sustainable water management in river deltas in a changing environment," Climatic Change, Springer, vol. 115(3), pages 795-819, December.
    3. Pieter Bloemen & Tim Reeder & Chris Zevenbergen & Jeroen Rijke & Ashley Kingsborough, 2018. "Lessons learned from applying adaptation pathways in flood risk management and challenges for the further development of this approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(7), pages 1083-1108, October.
    4. Kolja Rotzoll & Charles H. Fletcher, 2013. "Assessment of groundwater inundation as a consequence of sea-level rise," Nature Climate Change, Nature, vol. 3(5), pages 477-481, May.
    5. Ma. Laurice Jamero & Motoharu Onuki & Miguel Esteban & Xyza Kristina Billones-Sensano & Nicholson Tan & Angelie Nellas & Hiroshi Takagi & Nguyen Danh Thao & Ven Paolo Valenzuela, 2017. "Small-island communities in the Philippines prefer local measures to relocation in response to sea-level rise," Nature Climate Change, Nature, vol. 7(8), pages 581-586, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanrui Sun & Lin Zhu & Lin Guo & Yong Luo & Dong Du & Ying Sun, 2022. "Understanding the different responses from the similarity between displacement and groundwater level time series in Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vizinho, André & Avelar, David & Fonseca, Ana Lúcia & Carvalho, Silvia & Sucena-Paiva, Leonor & Pinho, Pedro & Nunes, Alice & Branquinho, Cristina & Vasconcelos, Ana Cátia & Santos, Filipe Duarte & Ro, 2021. "Framing the application of Adaptation Pathways for agroforestry in Mediterranean drylands," Land Use Policy, Elsevier, vol. 104(C).
    2. Babaeian, Fariba & Delavar, Majid & Morid, Saeed & Srinivasan, Raghavan, 2021. "Robust climate change adaptation pathways in agricultural water management," Agricultural Water Management, Elsevier, vol. 252(C).
    3. Kaihang Zhou & Scott Hawken, 2023. "Climate-Related Sea Level Rise and Coastal Wastewater Treatment Infrastructure Futures: Landscape Planning Scenarios for Negotiating Risks and Opportunities in Australian Urban Areas," Sustainability, MDPI, vol. 15(11), pages 1-23, June.
    4. Bhandari, Pratik & Creighton, Douglas & Gong, Jinzhe & Boyle, Carol & Law, Kris M.Y., 2023. "Evolution of cyber-physical-human water systems: Challenges and gaps," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    5. Geronimo Gussmann & Jochen Hinkel, 2020. "What drives relocation policies in the Maldives?," Climatic Change, Springer, vol. 163(2), pages 931-951, November.
    6. C. Orsenigo & C. Vercellis, 2018. "Anthropogenic influence on global warming for effective cost-benefit analysis: a machine learning perspective," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 45(3), pages 425-442, September.
    7. Matteo Giuliani & Andrea Castelletti, 2016. "Is robustness really robust? How different definitions of robustness impact decision-making under climate change," Climatic Change, Springer, vol. 135(3), pages 409-424, April.
    8. Judy Lawrence & Robert Bell & Adolf Stroombergen, 2019. "A Hybrid Process to Address Uncertainty and Changing Climate Risk in Coastal Areas Using Dynamic Adaptive Pathways Planning, Multi-Criteria Decision Analysis & Real Options Analysis: A New Zealand App," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    9. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    10. Angela Mallette & Timothy F. Smith & Carmen Elrick-Barr & Jessica Blythe & Ryan Plummer, 2021. "Understanding Preferences for Coastal Climate Change Adaptation: A Systematic Literature Review," Sustainability, MDPI, vol. 13(15), pages 1-22, August.
    11. Dominik Paprotny & Paweł Terefenko, 2017. "New estimates of potential impacts of sea level rise and coastal floods in Poland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1249-1277, January.
    12. Dittrich, Ruth & Wreford, Anita & Moran, Dominic, 2016. "A survey of decision-making approaches for climate change adaptation: Are robust methods the way forward?," Ecological Economics, Elsevier, vol. 122(C), pages 79-89.
    13. Julie Shortridge & Janey Smith Camp, 2019. "Addressing Climate Change as an Emerging Risk to Infrastructure Systems," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 959-967, May.
    14. Florence Crick & Katie Jenkins & Swenja Surminski, 2016. "Strengthening insurance partnerships in the face of climate change – insights from an agent-based model of flood insurance in the UK," GRI Working Papers 241, Grantham Research Institute on Climate Change and the Environment.
    15. Lieke Brackel, 2021. "Continuous Negotiation in Climate Adaptation: The Challenge of Co-Evolution for the Capability Approach to Justice," Sustainability, MDPI, vol. 13(23), pages 1-18, November.
    16. Anne van Bruggen & Igor Nikolic & Jan Kwakkel, 2019. "Modeling with Stakeholders for Transformative Change," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    17. Alexander Bisaro & Mark Bel & Jochen Hinkel & Sien Kok & Laurens M. Bouwer, 2020. "Leveraging public adaptation finance through urban land reclamation: cases from Germany, the Netherlands and the Maldives," Climatic Change, Springer, vol. 160(4), pages 671-689, June.
    18. Gwenaël Jouannic & Anaïs Ameline & Kelly Pasquon & Oscar Navarro & Chloé Tran Duc Minh & Abdel Halim Boudoukha & Marie-Aude Corbillé & Denis Crozier & Ghozlane Fleury-Bahi & Julien Gargani & Paul Guér, 2020. "Recovery of the Island of Saint Martin after Hurricane Irma: An Interdisciplinary Perspective," Sustainability, MDPI, vol. 12(20), pages 1-25, October.
    19. K. Bruijn & N. Lips & B. Gersonius & H. Middelkoop, 2016. "The storyline approach: a new way to analyse and improve flood event management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 99-121, March.
    20. Beatriz Azevedo de Almeida & Ali Mostafavi, 2016. "Resilience of Infrastructure Systems to Sea-Level Rise in Coastal Areas: Impacts, Adaptation Measures, and Implementation Challenges," Sustainability, MDPI, vol. 8(11), pages 1-28, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:103:y:2020:i:1:d:10.1007_s11069-020-04017-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.