IDEAS home Printed from https://ideas.repec.org/a/spr/minecn/v35y2022i3d10.1007_s13563-022-00332-4.html
   My bibliography  Save this article

The impacts of environmental, social and governance (ESG) issues in achieving sustainable lithium supply in the Lithium Triangle

Author

Listed:
  • E. Petavratzi

    (British Geological Survey)

  • D. Sanchez-Lopez

    (Margaret Anstee Centre-Newnham College, University of Cambridge)

  • A. Hughes

    (British Geological Survey)

  • J. Stacey

    (British Geological Survey (Associate Consultant On Biodiversity))

  • J. Ford

    (British Geological Survey)

  • A. Butcher

    (British Geological Survey)

Abstract

The electrification transition will intensify the demand for lithium. The endowment in the Lithium Triangle is significant, and the expectations for the global supply are high in terms of resources and sustainability. In this paper, we investigate the impact of environmental, social and governance (ESG) challenges to the future of sustainable lithium extraction. We undertook a qualitative analysis to prioritise the risks associated with these challenges and discussed their interlinkages. We argue that a sustainable perspective for lithium extraction in the region requires continuous and informed dialogue among government, industry and community stakeholders and participatory processes that reduce the asymmetries of power and knowledge. We provide a list of urgent mitigation actions that could assist the move towards sustainability. These include the following. First is expanding our understandings of the water cycle of lithium brines in this region. This should be underpinned by baseline data and ongoing monitoring at the watershed scale, capacity building to strengthen institutions, improved regulations and data infrastructures to promote data transparency and accessibility. Second is integrating biodiversity impacts within existing mining practices and procedures (e.g. Environmental Impact Assessments — EIA). We propose the strategic implementation of the mitigation hierarchy and IFC’s Performance Standards to avoid, reduce and offset the risks of lithium extraction on ecosystem services and critically important biodiversity impacts. Third is strengthening social participatory processes that enable the local communities to become actors in decision-making and the ongoing management and monitoring of lithium projects. Fourth is establishing a framework to support a Strategic Environmental and Social Assessment (SESA) process specific to lithium with a regional approach in the Lithium Triangle.

Suggested Citation

  • E. Petavratzi & D. Sanchez-Lopez & A. Hughes & J. Stacey & J. Ford & A. Butcher, 2022. "The impacts of environmental, social and governance (ESG) issues in achieving sustainable lithium supply in the Lithium Triangle," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(3), pages 673-699, December.
  • Handle: RePEc:spr:minecn:v:35:y:2022:i:3:d:10.1007_s13563-022-00332-4
    DOI: 10.1007/s13563-022-00332-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13563-022-00332-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13563-022-00332-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard T. Woodward, 2000. "Sustainability as Intergenerational Fairness: Efficiency, Uncertainty, and Numerical Methods," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(3), pages 581-593.
    2. Graham M Turner, 2008. "A Comparison of the Limits to Growth with Thirty Years of Reality," Socio-Economics and the Environment in Discussion (SEED) Working Paper Series 2008-09, CSIRO Sustainable Ecosystems.
    3. Klaassen, Ger A. J. & Opschoor, Johannes B., 1991. "Economics of sustainability or the sustainability of economics: Different paradigms," Ecological Economics, Elsevier, vol. 4(2), pages 93-115, November.
    4. Philip Maxwell & Mauricio Mora, 2020. "Lithium and Chile: looking back and looking forward," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 57-71, July.
    5. Gavin Harper & Roberto Sommerville & Emma Kendrick & Laura Driscoll & Peter Slater & Rustam Stolkin & Allan Walton & Paul Christensen & Oliver Heidrich & Simon Lambert & Andrew Abbott & Karl Ryder & L, 2019. "Recycling lithium-ion batteries from electric vehicles," Nature, Nature, vol. 575(7781), pages 75-86, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radebe, Nomkhosi & Chipangamate, Nelson, 2024. "Mining industry risks, and future critical minerals and metals supply chain resilience in emerging markets," Resources Policy, Elsevier, vol. 91(C).
    2. Emilio Soberón Bravo, 2023. "Governance on lithium mining shareholdings: expanding Environment, Social and Governance (ESG) indicators to economic regulation and raw material politics," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(2), pages 333-347, June.
    3. Ghorbani, Yousef & Zhang, Steven E. & Bourdeau, Julie E. & Chipangamate, Nelson S. & Rose, Derek H. & Valodia, Imraan & Nwaila, Glen T., 2024. "The strategic role of lithium in the green energy transition: Towards an OPEC-style framework for green energy-mineral exporting countries (GEMEC)," Resources Policy, Elsevier, vol. 90(C).
    4. Fuentealba, Diego & Flores-Fernández, Cherie & Troncoso, Elizabeth & Estay, Humberto, 2023. "Technological tendencies for lithium production from salt lake brines: Progress and research gaps to move towards more sustainable processes," Resources Policy, Elsevier, vol. 83(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Opschoor, J. (Hans) B., 1995. "Ecospace and the fall and rise of throughput intensity," Ecological Economics, Elsevier, vol. 15(2), pages 137-140, November.
    2. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    3. Nicolas Bouleau, 2012. "Limits To Growth And Stochastics," Post-Print halshs-00782948, HAL.
    4. Julia M. Puaschunder, 2018. "Climate in the 21st Century," Proceedings of the 8th International RAIS Conference, March 26-27, 2018 018, Research Association for Interdisciplinary Studies.
    5. repec:voc:wpaper:tech82012 is not listed on IDEAS
    6. Malmaeus, J. Mikael & Alfredsson, Eva C., 2017. "Potential Consequences on the Economy of Low or No Growth - Short and Long Term Perspectives," Ecological Economics, Elsevier, vol. 134(C), pages 57-64.
    7. Xhulia Likaj & Michael Jacobs & Thomas Fricke, 2022. "Growth, Degrowth or Post-growth? Towards a synthetic understanding of the growth debate," Basic Papers 2, Forum New Economy.
    8. Guido Busca, 2024. "Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering," Energies, MDPI, vol. 17(14), pages 1-32, July.
    9. Lukáš Režný & Vladimír Bureš, 2019. "Energy Transition Scenarios and Their Economic Impacts in the Extended Neoclassical Model of Economic Growth," Sustainability, MDPI, vol. 11(13), pages 1-25, July.
    10. Hänsel, Martin C. & Quaas, Martin F., 2018. "Intertemporal Distribution, Sufficiency, and the Social Cost of Carbon," Ecological Economics, Elsevier, vol. 146(C), pages 520-535.
    11. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    12. Thomas Döring & Birgit Aigner-Walder, 2022. "The Limits to Growth — 50 Years Ago and Today," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 57(3), pages 187-191, May.
    13. Knapp, Keith C., 2006. "Recursive Sustainability: Intertemporal Efficiency and Equity," 2006 Annual meeting, July 23-26, Long Beach, CA 21472, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Baumgärtner, Stefan & Quaas, Martin F., 2009. "Ecological-economic viability as a criterion of strong sustainability under uncertainty," Ecological Economics, Elsevier, vol. 68(7), pages 2008-2020, May.
    15. Trutnevyte, Evelina & McDowall, Will & Tomei, Julia & Keppo, Ilkka, 2016. "Energy scenario choices: Insights from a retrospective review of UK energy futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 326-337.
    16. Gutsch, Moritz & Leker, Jens, 2024. "Costs, carbon footprint, and environmental impacts of lithium-ion batteries – From cathode active material synthesis to cell manufacturing and recycling," Applied Energy, Elsevier, vol. 353(PB).
    17. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    18. Guanjun Ji & Di Tang & Junxiong Wang & Zheng Liang & Haocheng Ji & Jun Ma & Zhaofeng Zhuang & Song Liu & Guangmin Zhou & Hui-Ming Cheng, 2024. "Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    20. Marco Filippo Torchio & Umberto Lucia & Giulia Grisolia, 2020. "Economic and Human Features for Energy and Environmental Indicators: A Tool to Assess Countries’ Progress towards Sustainability," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    21. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:minecn:v:35:y:2022:i:3:d:10.1007_s13563-022-00332-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.