IDEAS home Printed from https://ideas.repec.org/a/spr/metron/v81y2023i2d10.1007_s40300-022-00236-x.html
   My bibliography  Save this article

Integrated likelihood inference in multinomial distributions

Author

Listed:
  • Thomas A. Severini

    (Northwestern University)

Abstract

Consider a random vector $$(N_1, N_2, \ldots , N_m)$$ ( N 1 , N 2 , … , N m ) with a multinomial distribution such that $${{\,\textrm{E}\,}}\left( N_j ; \theta \right) = n p_j(\theta )$$ E N j ; θ = n p j ( θ ) , $$ j=1, \ldots , m$$ j = 1 , … , m , where $$p_1, \cdots , p_m$$ p 1 , ⋯ , p m are known functions of an unknown d-dimensional parameter, satisfying $$p_1(\theta ) + \cdots + p_m(\theta ) = 1$$ p 1 ( θ ) + ⋯ + p m ( θ ) = 1 . This paper considers non-Bayesian likelihood inference for a real-valued parameter of interest $$\psi = g(\theta )$$ ψ = g ( θ ) , for a known function g, using an integrated likelihood function. The integrated likelihood function is constructed using the zero-score expectation (ZSE) parameter, proposed by Severini (Biometrika 94:529–524, 2007); thus, the integrated likelihood function has a number of important properties, such as approximate score- and information-unbiasedness. The methodology is illustrated on the problem of inference for the entropy of the distribution.

Suggested Citation

  • Thomas A. Severini, 2023. "Integrated likelihood inference in multinomial distributions," METRON, Springer;Sapienza Università di Roma, vol. 81(2), pages 131-142, August.
  • Handle: RePEc:spr:metron:v:81:y:2023:i:2:d:10.1007_s40300-022-00236-x
    DOI: 10.1007/s40300-022-00236-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40300-022-00236-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40300-022-00236-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas A. Severini, 2007. "Integrated likelihood functions for non-Bayesian inference," Biometrika, Biometrika Trust, vol. 94(3), pages 529-542.
    2. T. A. Severini, 2010. "Likelihood ratio statistics based on an integrated likelihood," Biometrika, Biometrika Trust, vol. 97(2), pages 481-496.
    3. Schumann, Martin & Severini, Thomas A. & Tripathi, Gautam, 2021. "Integrated likelihood based inference for nonlinear panel data models with unobserved effects," Journal of Econometrics, Elsevier, vol. 223(1), pages 73-95.
    4. Gary Chamberlain, 2007. "Decision Theory Applied to an Instrumental Variables Model," Econometrica, Econometric Society, vol. 75(3), pages 609-652, May.
    5. Manuel Arellano & Stéphane Bonhomme, 2009. "Robust Priors in Nonlinear Panel Data Models," Econometrica, Econometric Society, vol. 77(2), pages 489-536, March.
    6. Malay Ghosh & Gauri Datta & Dalho Kim & Trevor Sweeting, 2006. "Likelihood-based Inference for the Ratios of Regression Coefficients in Linear Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(3), pages 457-473, September.
    7. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schumann, Martin & Severini, Thomas A. & Tripathi, Gautam, 2023. "The role of score and information bias in panel data likelihoods," Journal of Econometrics, Elsevier, vol. 235(2), pages 1215-1238.
    2. Zhenyu Zhao & Thomas A. Severini, 2017. "Integrated likelihood computation methods," Computational Statistics, Springer, vol. 32(1), pages 281-313, March.
    3. Giuliana Cortese & Nicola Sartori, 2016. "Integrated likelihoods in parametric survival models for highly clustered censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 382-404, July.
    4. Schumann, Martin & Severini, Thomas A. & Tripathi, Gautam, 2021. "Integrated likelihood based inference for nonlinear panel data models with unobserved effects," Journal of Econometrics, Elsevier, vol. 223(1), pages 73-95.
    5. Pakel, Cavit, 2019. "Bias reduction in nonlinear and dynamic panels in the presence of cross-section dependence," Journal of Econometrics, Elsevier, vol. 213(2), pages 459-492.
    6. H. V. Kulkarni & S. M. Patil, 2021. "Uniformly implementable small sample integrated likelihood ratio test for one-way and two-way ANOVA under heteroscedasticity and normality," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 273-305, June.
    7. Ruggero Bellio & Annamaria Guolo, 2016. "Integrated Likelihood Inference in Small Sample Meta-analysis for Continuous Outcomes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 191-201, March.
    8. Marta F. Arroyabe & Martin Schumann, 2022. "On the Estimation of True State Dependence in the Persistence of Innovation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(4), pages 850-893, August.
    9. Zaigraev, A. & Podraza-Karakulska, A., 2014. "Maximum integrated likelihood estimator of the interest parameter when the nuisance parameter is location or scale," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 99-106.
    10. repec:hal:spmain:info:hdl:2441/dambferfb7dfprc9m052g20qh is not listed on IDEAS
    11. Robert L. Paige & A. Alexandre Trindade & P. Harshini Fernando, 2009. "Saddlepoint‐Based Bootstrap Inference for Quadratic Estimating Equations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 98-111, March.
    12. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    13. Hajargasht, Gholamreza & Rao, D.S. Prasada, 2019. "Multilateral index number systems for international price comparisons: Properties, existence and uniqueness," Journal of Mathematical Economics, Elsevier, vol. 83(C), pages 36-47.
    14. Kakamu, Kazuhiko & Yunoue, Hideo & Kuramoto, Takashi, 2014. "Spatial patterns of flypaper effects for local expenditure by policy objective in Japan: A Bayesian approach," Economic Modelling, Elsevier, vol. 37(C), pages 500-506.
    15. Parent, Olivier & LeSage, James P., 2011. "A space-time filter for panel data models containing random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 475-490, January.
    16. Hou, Yanxi & Leng, Xuan & Peng, Liang & Zhou, Yinggang, 2024. "Panel quantile regression for extreme risk," Journal of Econometrics, Elsevier, vol. 240(1).
    17. Alvarez, Javier & Arellano, Manuel, 2022. "Robust likelihood estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 21-61.
    18. repec:spo:wpmain:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    19. Gary Bolton & Duncan Fong & Paul Mosquin, 2003. "Bayes Factors with an Application to Experimental Economics," Experimental Economics, Springer;Economic Science Association, vol. 6(3), pages 311-325, November.
    20. Shiu, Ji-Liang & Hu, Yingyao, 2013. "Identification and estimation of nonlinear dynamic panel data models with unobserved covariates," Journal of Econometrics, Elsevier, vol. 175(2), pages 116-131.
    21. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," Working Paper series 18-38, Rimini Centre for Economic Analysis.
    22. Jouchi Nakajima & Yasuhiro Omori, 2007. "Leverage, Heavy-Tails and Correlated Jumps in Stochastic Volatility Models (Revised in January 2008; Published in "Computational Statistics and Data Analysis", 53-6, 2335-2353. April 2009. )," CARF F-Series CARF-F-107, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metron:v:81:y:2023:i:2:d:10.1007_s40300-022-00236-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.