IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i4p875-890.html
   My bibliography  Save this article

Robust designs for generalized linear models with possible overdispersion and misspecified link functions

Author

Listed:
  • Adewale, Adeniyi J.
  • Xu, Xiaojian

Abstract

We discuss robust designs for generalized linear models with protection for possible departures from the usual model assumptions. Besides possible inaccuracy in an assumed linear predictor, both problems of overdispersion and misspecification in link function are addressed. For logistic and Poisson models, as examples, we incorporate the variance function prescribed by a superior model similar to a generalized linear mixed model to address overdispersion, and adopt a parameterized generalized family of link functions to deal with the problem of link misspecification. The design criterion is the average mean squared prediction error (AMSPE). The exact optimal design, which minimizes the AMSPE, is also presented using examples on the toxicity of ethylene oxide to grain beetles, and on Ames Salmonella Assay.

Suggested Citation

  • Adewale, Adeniyi J. & Xu, Xiaojian, 2010. "Robust designs for generalized linear models with possible overdispersion and misspecified link functions," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 875-890, April.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:4:p:875-890
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00362-4
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dette, Holger & Biedermann, Stefanie & Pepelyshev, Andrey, 2004. "Some robust design strategies for percentile estimation in binary response models," Technical Reports 2004,19, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Joy King & Weng-Kee Wong, 2000. "Minimax D-Optimal Designs for the Logistic Model," Biometrics, The International Biometric Society, vol. 56(4), pages 1263-1267, December.
    3. Adewale, Adeniyi J. & Wiens, Douglas P., 2006. "New criteria for robust integer-valued designs in linear models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 723-736, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diego Ramos Canterle & Fábio Mariano Bayer, 2019. "Variable dispersion beta regressions with parametric link functions," Statistical Papers, Springer, vol. 60(5), pages 1541-1567, October.
    2. Kwame Asiam Addey & William Nganje, 2023. "The role of the U.S. exchange‐rate equity market volatility on agricultural exports and forecasts," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 71(1), pages 25-47, March.
    3. Amalan Mahendran & Helen Thompson & James M. McGree, 2023. "A model robust subsampling approach for Generalised Linear Models in big data settings," Statistical Papers, Springer, vol. 64(4), pages 1137-1157, August.
    4. Sanjoy Sinha, 2013. "Robust designs for multivariate logistic regression," METRON, Springer;Sapienza Università di Roma, vol. 71(2), pages 157-173, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wiens, Douglas P., 2010. "Robustness of design for the testing of lack of fit and for estimation in binary response models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3371-3378, December.
    2. Tekle, Fetene B. & Tan, Frans E.S. & Berger, Martijn P.F., 2008. "Maximin D-optimal designs for binary longitudinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5253-5262, August.
    3. Sheng Wu & Weng Kee Wong & Catherine M. Crespi, 2017. "Maximin optimal designs for cluster randomized trials," Biometrics, The International Biometric Society, vol. 73(3), pages 916-926, September.
    4. Chang Li & Daniel C. Coster, 2022. "Improved Particle Swarm Optimization Algorithms for Optimal Designs with Various Decision Criteria," Mathematics, MDPI, vol. 10(13), pages 1-16, July.
    5. Masoudi, Ehsan & Holling, Heinz & Wong, Weng Kee, 2017. "Application of imperialist competitive algorithm to find minimax and standardized maximin optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 330-345.
    6. Dette, Holger & Haines, Linda M. & Imhof, Lorens A., 2003. "Bayesian and maximin optimal designs for heteroscedastic regression models," Technical Reports 2003,36, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    7. J. López Fidalgo & I. M. Ortiz Rodr�guez & Weng Kee Wong, 2011. "Design issues for population growth models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(3), pages 501-512, November.
    8. Belmiro P. M. Duarte & Weng Kee Wong, 2015. "Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach," International Statistical Review, International Statistical Institute, vol. 83(2), pages 239-262, August.
    9. Maryam Safarkhani & Mirjam Moerbeek, 2016. "D-optimal designs for a continuous predictor in longitudinal trials with discrete-time survival endpoints," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(2), pages 146-171, May.
    10. Karvanen, Juha & Kulathinal, Sangita & Gasbarra, Dario, 2009. "Optimal designs to select individuals for genotyping conditional on observed binary or survival outcomes and non-genetic covariates," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1782-1793, March.
    11. García-Ródenas, Ricardo & García-García, José Carlos & López-Fidalgo, Jesús & Martín-Baos, José Ángel & Wong, Weng Kee, 2020. "A comparison of general-purpose optimization algorithms for finding optimal approximate experimental designs," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    12. Dette, Holger & Biedermann, Stefanie & Zhu, Wei, 2005. "Compound Optimal Designs for Percentile Estimation in Dose-Response Models with Restricted Design Intervals," Technical Reports 2005,02, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:4:p:875-890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.