IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v99y2012i1p238-244.html
   My bibliography  Save this article

On robust estimation via pseudo-additive information

Author

Listed:
  • Davide Ferrari
  • Davide La Vecchia

Abstract

We consider a robust parameter estimator minimizing an empirical approximation to the q-entropy and show its relationship to minimization of power divergences through a simple parameter transformation. The estimator balances robustness and efficiency through a tuning constant q and avoids kernel density smoothing. We derive an upper bound to the estimator mean squared error under a contaminated reference model and use it as a min-max criterion for selecting q. Copyright 2012, Oxford University Press.

Suggested Citation

  • Davide Ferrari & Davide La Vecchia, 2012. "On robust estimation via pseudo-additive information," Biometrika, Biometrika Trust, vol. 99(1), pages 238-244.
  • Handle: RePEc:oup:biomet:v:99:y:2012:i:1:p:238-244
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asr061
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. La Vecchia, Davide & Camponovo, Lorenzo & Ferrari, Davide, 2015. "Robust heart rate variability analysis by generalized entropy minimization," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 137-151.
    2. Giuzio, Margherita & Ferrari, Davide & Paterlini, Sandra, 2016. "Sparse and robust normal and t- portfolios by penalized Lq-likelihood minimization," European Journal of Operational Research, Elsevier, vol. 250(1), pages 251-261.
    3. Catania, Leopoldo & Luati, Alessandra, 2020. "Robust estimation of a location parameter with the integrated Hogg function," Statistics & Probability Letters, Elsevier, vol. 164(C).
    4. Chao Huang & Jin-Guan Lin & Yan-Yan Ren, 2013. "Testing for the shape parameter of generalized extreme value distribution based on the $$L_q$$ -likelihood ratio statistic," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(5), pages 641-671, July.
    5. Terezinha K. A. Ribeiro & Silvia L. P. Ferrari, 2023. "Robust estimation in beta regression via maximum L $$_q$$ q -likelihood," Statistical Papers, Springer, vol. 64(1), pages 321-353, February.
    6. Davide La Vecchia, 2016. "Stable Asymptotics for M-estimators," International Statistical Review, International Statistical Institute, vol. 84(2), pages 267-290, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:99:y:2012:i:1:p:238-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.