IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v81y2018i3d10.1007_s00184-018-0643-6.html
   My bibliography  Save this article

Optimal choice of order statistics under confidence region estimation in case of large samples

Author

Listed:
  • Alexander Zaigraev

    (Nicolaus Copernicus University)

  • Magdalena Alama-Bućko

    (UTP University of Science and Technology)

Abstract

The problem of optimal estimation of location and scale parameters of distributions, by means of two-dimensional confidence regions based on L-statistics, is considered. The case, when the sample size tends to infinity, is analyzed.

Suggested Citation

  • Alexander Zaigraev & Magdalena Alama-Bućko, 2018. "Optimal choice of order statistics under confidence region estimation in case of large samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 283-305, April.
  • Handle: RePEc:spr:metrik:v:81:y:2018:i:3:d:10.1007_s00184-018-0643-6
    DOI: 10.1007/s00184-018-0643-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-018-0643-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-018-0643-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Einmahl, J. H.J. & Mason, D.M., 1992. "Generalized quantile processes," Other publications TiSEM b2a76bac-045d-457f-869f-d, Tilburg University, School of Economics and Management.
    2. Alexander Zaigraev & Magdalena Alama-Bućko, 2013. "On optimal choice of order statistics in large samples for the construction of confidence regions for the location and scale," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(4), pages 577-593, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barme-Delcroix, Marie-Francoise & Gather, Ursula, 2007. "Limit laws for multidimensional extremes," Statistics & Probability Letters, Elsevier, vol. 77(18), pages 1750-1755, December.
    2. Polonik, Wolfgang, 1997. "Minimum volume sets and generalized quantile processes," Stochastic Processes and their Applications, Elsevier, vol. 69(1), pages 1-24, July.
    3. Serfling, Robert, 2002. "Generalized Quantile Processes Based on Multivariate Depth Functions, with Applications in Nonparametric Multivariate Analysis," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 232-247, October.
    4. Croux, Christophe & Haesbroeck, Gentiane, 1997. "An easy way to increase the finite-sample efficiency of the resampled minimum volume ellipsoid estimator," Computational Statistics & Data Analysis, Elsevier, vol. 25(2), pages 125-141, July.
    5. Nadja Klein & Thomas Kneib, 2020. "Directional bivariate quantiles: a robust approach based on the cumulative distribution function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 225-260, June.
    6. Alexander Zaigraev & Magdalena Alama-Bućko, 2013. "On optimal choice of order statistics in large samples for the construction of confidence regions for the location and scale," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(4), pages 577-593, May.
    7. Ryan Janicki & Tucker S. McElroy, 2016. "Hermite expansion and estimation of monotonic transformations of Gaussian data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 207-234, March.
    8. Wang, Jin, 2019. "Asymptotics of generalized depth-based spread processes and applications," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 363-380.
    9. Einmahl, J.H.J. & Gantner, M. & Sawitzki, G., 2008. "The Shorth Plot," Other publications TiSEM 10b5cfb5-c502-46dc-8e51-5, Tilburg University, School of Economics and Management.
    10. Beirlant, J. & Buitendag, S. & del Barrio, E. & Hallin, M. & Kamper, F., 2020. "Center-outward quantiles and the measurement of multivariate risk," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 79-100.
    11. Mulubrhan G. Haile & Lingling Zhang & David J. Olive, 2024. "Predicting Random Walks and a Data-Splitting Prediction Region," Stats, MDPI, vol. 7(1), pages 1-11, January.
    12. Wang, Jin & Serfling, Robert, 2006. "Influence functions for a general class of depth-based generalized quantile functions," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 810-826, April.
    13. Vladimir I. Koltchinskii, 1998. "Differentiability of Inverse Operators and Limit Theorems for Inverse Functions," Journal of Theoretical Probability, Springer, vol. 11(3), pages 645-699, July.
    14. J. Beirlant & A. Berlinet & G. Biau, 2008. "Higher order estimation at Lebesgue points," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 651-677, September.
    15. Justel, Ana & Peña, Daniel & Zamar, Rubén, 1997. "A multivariate Kolmogorov-Smirnov test of goodness of fit," Statistics & Probability Letters, Elsevier, vol. 35(3), pages 251-259, October.
    16. Baíllo, Amparo, 2003. "Total error in a plug-in estimator of level sets," DES - Working Papers. Statistics and Econometrics. WS ws032806, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Polonik, Wolfgang & Yao, Qiwei, 2002. "Set-Indexed Conditional Empirical and Quantile Processes Based on Dependent Data," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 234-255, February.
    18. Beirlant, J. & Mason, D. M. & Vynckier, C., 1999. "Goodness-of-fit analysis for multivariate normality based on generalized quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 30(2), pages 119-142, April.
    19. Di Bucchianico, A. & Einmahl, J.H.J. & Mushkudiani, N.A., 2001. "Smallest nonparametric tolerance regions," Other publications TiSEM 436f9be2-d0ad-49af-b6df-9, Tilburg University, School of Economics and Management.
    20. Gantner, M., 2010. "Some nonparametric diagnostic statistical procedures and their asymptotic behavior," Other publications TiSEM eb04bdba-bf8a-4f6c-8dd8-9, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:81:y:2018:i:3:d:10.1007_s00184-018-0643-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.