IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i4p810-826.html
   My bibliography  Save this article

Influence functions for a general class of depth-based generalized quantile functions

Author

Listed:
  • Wang, Jin
  • Serfling, Robert

Abstract

Given a multivariate probability distribution F, a corresponding depth function orders points according to their "centrality" in the distribution F. One useful role of depth functions is to generate two-dimensional curves for convenient and practical description of particular features of a multivariate distribution, such as dispersion and kurtosis. Here the robustness of sample versions of such curves is explored via the influence function approach applied to the relevant functionals, using structural representations of the curves as generalized quantile functions. In particular, for a general class of so-called Type D depth functions including the well-known Tukey or halfspace depth, we obtain influence functions for the depth function itself, the depth distribution function, the depth quantile function, and corresponding depth-based generalized quantile functions. Robustness behavior similar to the usual univariate quantiles is found and quantified: the influence functions are of step function form with finite gross error sensitivity but infinite local shift sensitivity. Applications to a "scale" curve, a Lorenz curve for "tailweight", and a "kurtosis" curve are treated. Graphical illustrations are provided for the influence functions of the scale and kurtosis curves in the case of the bivariate standard normal distribution and the halfspace depth function.

Suggested Citation

  • Wang, Jin & Serfling, Robert, 2006. "Influence functions for a general class of depth-based generalized quantile functions," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 810-826, April.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:4:p:810-826
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00118-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Einmahl, J. H.J. & Mason, D.M., 1992. "Generalized quantile processes," Other publications TiSEM b2a76bac-045d-457f-869f-d, Tilburg University, School of Economics and Management.
    2. Serfling, Robert, 2002. "Generalized Quantile Processes Based on Multivariate Depth Functions, with Applications in Nonparametric Multivariate Analysis," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 232-247, October.
    3. Romanazzi, Mario, 2001. "Influence Function of Halfspace Depth," Journal of Multivariate Analysis, Elsevier, vol. 77(1), pages 138-161, April.
    4. Gastwirth, Joseph L, 1971. "A General Definition of the Lorenz Curve," Econometrica, Econometric Society, vol. 39(6), pages 1037-1039, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jin, 2019. "Asymptotics of generalized depth-based spread processes and applications," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 363-380.
    2. Xin Dang & Robert Serfling & Weihua Zhou, 2009. "Influence functions of some depth functions, and application to depth-weighted L-statistics," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(1), pages 49-66.
    3. Daniel Kosiorowski, 2008. "Scale curve – a robust and nonparametric approach to study a dispersion and interdependence of multivariate distributions," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 18(4), pages 47-60.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serfling, Robert, 2002. "Generalized Quantile Processes Based on Multivariate Depth Functions, with Applications in Nonparametric Multivariate Analysis," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 232-247, October.
    2. Wang, Jin, 2019. "Asymptotics of generalized depth-based spread processes and applications," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 363-380.
    3. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    4. Barry Arnold, 2015. "On Zenga and Bonferroni curves," METRON, Springer;Sapienza Università di Roma, vol. 73(1), pages 25-30, April.
    5. Vanesa Jorda & Jos Mar a Sarabia & Markus J ntti, 2020. "Estimation of Income Inequality from Grouped Data," LIS Working papers 804, LIS Cross-National Data Center in Luxembourg.
    6. Ziqing Dong & Yves Tillé & Giovanni M. Giorgi & Alessio Guandalini, 2021. "Linearization and variance estimation of the Bonferroni inequality index," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 1008-1029, July.
    7. Sarabia, José María, 2008. "A general definition of the Leimkuhler curve," Journal of Informetrics, Elsevier, vol. 2(2), pages 156-163.
    8. Fabio Clementi & Mauro Gallegati & Giorgio Kaniadakis, 2010. "A model of personal income distribution with application to Italian data," Empirical Economics, Springer, vol. 39(2), pages 559-591, October.
    9. Carmen Puerta & Ana Urrutia, 2012. "Lower and upper tail concern and the rank dependent social evaluation functions," Economics Bulletin, AccessEcon, vol. 32(4), pages 3250-3259.
    10. Ravallion, Martin & Chen, Shaohua, 2003. "Measuring pro-poor growth," Economics Letters, Elsevier, vol. 78(1), pages 93-99, January.
    11. Yu Zhang & Jiayu Wu & Chunyao Zhou & Qingyu Zhang, 2019. "Installation Planning in Regional Thermal Power Industry for Emissions Reduction Based on an Emissions Inventory," IJERPH, MDPI, vol. 16(6), pages 1-13, March.
    12. Masato Okamoto, 2014. "Interpolating the Lorenz Curve: Methods to Preserve Shape and Remain Consistent with the Concentration Curves for Components," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(2), pages 349-384, June.
    13. Zhu, Yongjun & Yan, Erjia, 2017. "Examining academic ranking and inequality in library and information science through faculty hiring networks," Journal of Informetrics, Elsevier, vol. 11(2), pages 641-654.
    14. Belzunce, Félix & Pinar, José F. & Ruiz, José M. & Sordo, Miguel A., 2013. "Comparison of concentration for several families of income distributions," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1036-1045.
    15. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    16. Csörgö, Miklós & Zitikis, Ricardas, 1997. "On the rate of strong consistency of Lorenz curves," Statistics & Probability Letters, Elsevier, vol. 34(2), pages 113-121, June.
    17. Barme-Delcroix, Marie-Francoise & Gather, Ursula, 2007. "Limit laws for multidimensional extremes," Statistics & Probability Letters, Elsevier, vol. 77(18), pages 1750-1755, December.
    18. Frank Cowell & Maria-Pia Victoria-Feser, 2003. "Distribution-Free Inference for Welfare Indices under Complete and Incomplete Information," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 1(3), pages 191-219, December.
    19. Edwin Fourrier-Nicolai & Michel Lubrano, 2019. "The Effect of Aspirations on Inequality: Evidence from the German Reunification using Bayesian Growth Incidence Curves," Working Papers halshs-02122371, HAL.
    20. Gengsheng Qin & Baoying Yang & Nelly Belinga-Hall, 2013. "Empirical likelihood-based inferences for the Lorenz curve," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:4:p:810-826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.