IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v83y2002i1p232-247.html
   My bibliography  Save this article

Generalized Quantile Processes Based on Multivariate Depth Functions, with Applications in Nonparametric Multivariate Analysis

Author

Listed:
  • Serfling, Robert

Abstract

Statistical depth functions are being used increasingly in nonparametric multivariate data analysis. In a broad treatment of depth-based methods, Liu, Parelius, and Singh ("Multivariate analysis by date depth: Descriptive statistics, graphics and inference (with discussion)," 1999) include several devices for visualizing selected multivariate distributional characteristics by one-dimensional curves constructed in terms of given depth functions. Here we show how these tools may be represented as special depth-based cases of generalized quantile functions introduced by J. H. J. Einmahl and D. M. Mason (1992, Ann. Statist.20, 1062-1078). By specializing results of the latter authors to the depth-based case, we develop an easily applied general result on convergence of sample depth-based generalized quantile processes to a Brownian bridge. As applications, we obtain the asymptotic behavior of sample versions of depth-based curves for "scale" and "kurtosis" introduced by Liu, Parelius and Singh. The kurtosis curve is actually a Lorenz curve designed to measure heaviness of tails of a multivariate distribution. We also obtain the asymptotic distribution of the quantile process of the sample depth values.

Suggested Citation

  • Serfling, Robert, 2002. "Generalized Quantile Processes Based on Multivariate Depth Functions, with Applications in Nonparametric Multivariate Analysis," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 232-247, October.
  • Handle: RePEc:eee:jmvana:v:83:y:2002:i:1:p:232-247
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(01)92044-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Einmahl, J. H.J. & Mason, D.M., 1992. "Generalized quantile processes," Other publications TiSEM b2a76bac-045d-457f-869f-d, Tilburg University, School of Economics and Management.
    2. Di Bucchianico, A. & Einmahl, J.H.J. & Mushkudiani, N.A., 2001. "Smallest nonparametric tolerance regions," Other publications TiSEM 436f9be2-d0ad-49af-b6df-9, Tilburg University, School of Economics and Management.
    3. Beirlant, J. & Mason, D. M. & Vynckier, C., 1999. "Goodness-of-fit analysis for multivariate normality based on generalized quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 30(2), pages 119-142, April.
    4. Gastwirth, Joseph L, 1971. "A General Definition of the Lorenz Curve," Econometrica, Econometric Society, vol. 39(6), pages 1037-1039, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jin, 2019. "Asymptotics of generalized depth-based spread processes and applications," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 363-380.
    2. Romanazzi, Mario, 2009. "Data depth, random simplices and multivariate dispersion," Statistics & Probability Letters, Elsevier, vol. 79(12), pages 1473-1479, June.
    3. Ra'ul Torres & Rosa E. Lillo & Henry Laniado, 2015. "A Directional Multivariate Value at Risk," Papers 1502.00908, arXiv.org.
    4. Wang, Jin & Zhou, Weihua, 2012. "A generalized multivariate kurtosis ordering and its applications," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 169-180.
    5. Mario Romanazzi, 2008. "A note on simplicial depth function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(3), pages 235-253, August.
    6. Torres, Raúl & Lillo, Rosa E. & Laniado, Henry, 2015. "A directional multivariate value at risk," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 111-123.
    7. Michele, Carlo de & Laniado Rodas, Henry, 2016. "Directional multivariate extremes in environmental phenomena," DES - Working Papers. Statistics and Econometrics. WS 23419, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    9. Agostinelli, Claudio, 2018. "Local half-region depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 67-79.
    10. Wang, Jin & Serfling, Robert, 2006. "Influence functions for a general class of depth-based generalized quantile functions," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 810-826, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beirlant, J. & Buitendag, S. & del Barrio, E. & Hallin, M. & Kamper, F., 2020. "Center-outward quantiles and the measurement of multivariate risk," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 79-100.
    2. Wang, Jin & Serfling, Robert, 2006. "Influence functions for a general class of depth-based generalized quantile functions," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 810-826, April.
    3. Barry Arnold, 2015. "On Zenga and Bonferroni curves," METRON, Springer;Sapienza Università di Roma, vol. 73(1), pages 25-30, April.
    4. Vanesa Jorda & Jos Mar a Sarabia & Markus J ntti, 2020. "Estimation of Income Inequality from Grouped Data," LIS Working papers 804, LIS Cross-National Data Center in Luxembourg.
    5. Ziqing Dong & Yves Tillé & Giovanni M. Giorgi & Alessio Guandalini, 2021. "Linearization and variance estimation of the Bonferroni inequality index," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 1008-1029, July.
    6. Sarabia, José María, 2008. "A general definition of the Leimkuhler curve," Journal of Informetrics, Elsevier, vol. 2(2), pages 156-163.
    7. Fabio Clementi & Mauro Gallegati & Giorgio Kaniadakis, 2010. "A model of personal income distribution with application to Italian data," Empirical Economics, Springer, vol. 39(2), pages 559-591, October.
    8. Carmen Puerta & Ana Urrutia, 2012. "Lower and upper tail concern and the rank dependent social evaluation functions," Economics Bulletin, AccessEcon, vol. 32(4), pages 3250-3259.
    9. Ravallion, Martin & Chen, Shaohua, 2003. "Measuring pro-poor growth," Economics Letters, Elsevier, vol. 78(1), pages 93-99, January.
    10. Yu Zhang & Jiayu Wu & Chunyao Zhou & Qingyu Zhang, 2019. "Installation Planning in Regional Thermal Power Industry for Emissions Reduction Based on an Emissions Inventory," IJERPH, MDPI, vol. 16(6), pages 1-13, March.
    11. Masato Okamoto, 2014. "Interpolating the Lorenz Curve: Methods to Preserve Shape and Remain Consistent with the Concentration Curves for Components," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(2), pages 349-384, June.
    12. Zhu, Yongjun & Yan, Erjia, 2017. "Examining academic ranking and inequality in library and information science through faculty hiring networks," Journal of Informetrics, Elsevier, vol. 11(2), pages 641-654.
    13. Belzunce, Félix & Pinar, José F. & Ruiz, José M. & Sordo, Miguel A., 2013. "Comparison of concentration for several families of income distributions," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1036-1045.
    14. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    15. Csörgö, Miklós & Zitikis, Ricardas, 1997. "On the rate of strong consistency of Lorenz curves," Statistics & Probability Letters, Elsevier, vol. 34(2), pages 113-121, June.
    16. Barme-Delcroix, Marie-Francoise & Gather, Ursula, 2007. "Limit laws for multidimensional extremes," Statistics & Probability Letters, Elsevier, vol. 77(18), pages 1750-1755, December.
    17. Frank Cowell & Maria-Pia Victoria-Feser, 2003. "Distribution-Free Inference for Welfare Indices under Complete and Incomplete Information," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 1(3), pages 191-219, December.
    18. Edwin Fourrier-Nicolai & Michel Lubrano, 2019. "The Effect of Aspirations on Inequality: Evidence from the German Reunification using Bayesian Growth Incidence Curves," Working Papers halshs-02122371, HAL.
    19. Gengsheng Qin & Baoying Yang & Nelly Belinga-Hall, 2013. "Empirical likelihood-based inferences for the Lorenz curve," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 1-21, February.
    20. Gattone, Stefano Antonio & Fortuna, Francesca & Evangelista, Adelia & Di Battista, Tonio, 2022. "Simultaneous confidence bands for the functional mean of convex curves," Econometrics and Statistics, Elsevier, vol. 24(C), pages 183-193.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:83:y:2002:i:1:p:232-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.