IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v79y2016i8d10.1007_s00184-016-0582-z.html
   My bibliography  Save this article

Qualitative robustness of estimators on stochastic processes

Author

Listed:
  • Katharina Strohriegl

    (Universität Bayreuth)

  • Robert Hable

    (Technische Hochschule Deggendorf)

Abstract

A lot of statistical methods originally designed for independent and identically distributed (i.i.d.) data are also successfully used for dependent observations. Still most theoretical investigations on robustness assume i.i.d. pairs of random variables. We examine an important property of statistical estimators—the qualitative robustness in the case of observations which do not fulfill the i.i.d. assumption. In the i.i.d. case qualitative robustness of a sequence of estimators is, according to Hampel (Ann Math Stat 42:1887–1896, 1971), ensured by continuity of the corresponding statistical functional. A similar result for the non-i.i.d. case is shown in this article. Continuity of the corresponding statistical functional still ensures qualitative robustness of the estimator as long as the data generating process satisfies a certain convergence condition on its empirical measure. Examples for processes providing such a convergence condition, including certain Markov chains or mixing processes, are given as well as examples for qualitatively robust estimators in the non-i.i.d. case.

Suggested Citation

  • Katharina Strohriegl & Robert Hable, 2016. "Qualitative robustness of estimators on stochastic processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 895-917, November.
  • Handle: RePEc:spr:metrik:v:79:y:2016:i:8:d:10.1007_s00184-016-0582-z
    DOI: 10.1007/s00184-016-0582-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-016-0582-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-016-0582-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steinwart, Ingo & Hush, Don & Scovel, Clint, 2009. "Learning from dependent observations," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 175-194, January.
    2. Doukhan, Paul & Louhichi, Sana, 1999. "A new weak dependence condition and applications to moment inequalities," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 313-342, December.
    3. Hable, Robert & Christmann, Andreas, 2011. "On qualitative robustness of support vector machines," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 993-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Wang & Huifu Xu & Tiejun Ma, 2020. "Quantitative Statistical Robustness for Tail-Dependent Law Invariant Risk Measures," Papers 2006.15491, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Jerôme Dedecker & Paul Doukhan, 2002. "A New Covariance Inequality and Applications," Working Papers 2002-25, Center for Research in Economics and Statistics.
    3. Pierre Perron & Eduardo Zorita & Wen Cao & Clifford Hurvich & Philippe Soulier, 2017. "Drift in Transaction-Level Asset Price Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 769-790, September.
    4. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    5. Berkes, István & Horváth, Lajos & Rice, Gregory, 2013. "Weak invariance principles for sums of dependent random functions," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 385-403.
    6. Tobias Adrian & Richard K. Crump & Erik Vogt, 2019. "Nonlinearity and Flight‐to‐Safety in the Risk‐Return Trade‐Off for Stocks and Bonds," Journal of Finance, American Finance Association, vol. 74(4), pages 1931-1973, August.
    7. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
    8. Guessoum, Zohra & Ould Saïd, Elias & Sadki, Ourida & Tatachak, Abdelkader, 2012. "A note on the Lynden-Bell estimator under association," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1994-2000.
    9. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
    10. Carvalho, Carlos & Masini, Ricardo & Medeiros, Marcelo C., 2018. "ArCo: An artificial counterfactual approach for high-dimensional panel time-series data," Journal of Econometrics, Elsevier, vol. 207(2), pages 352-380.
    11. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
    12. Francisco Blasques, 2014. "Transformed Polynomials For Nonlinear Autoregressive Models Of The Conditional Mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(3), pages 218-238, May.
    13. Coulon-Prieur, Clémentine & Doukhan, Paul, 2000. "A triangular central limit theorem under a new weak dependence condition," Statistics & Probability Letters, Elsevier, vol. 47(1), pages 61-68, March.
    14. Dag Tjøstheim, 2012. "Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 413-438, September.
    15. Zähle, Henryk, 2016. "A definition of qualitative robustness for general point estimators, and examples," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 12-31.
    16. Hwang, Eunju & Shin, Dong Wan, 2012. "Strong consistency of the stationary bootstrap under ψ-weak dependence," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 488-495.
    17. Alessio Sancetta, 2007. "Weak Convergence of Laws on ℝ K with Common Marginals," Journal of Theoretical Probability, Springer, vol. 20(2), pages 371-380, June.
    18. Xuan Liang & Jiti Gao & Xiaodong Gong, 2022. "Semiparametric Spatial Autoregressive Panel Data Model with Fixed Effects and Time-Varying Coefficients," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1784-1802, October.
    19. Agnieszka Jach & Tucker S. McElroy & Dimitris N. Politis, 2016. "Corrigendum to ‘Subsampling Inference for the Mean of Heavy-Tailed Long-Memory Time Series’ by A. Jach, T. S. McElroy and D. N. Politis," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(5), pages 713-720, September.
    20. Eunju Hwang & Dong Shin, 2016. "Kernel estimators of mode under $$\psi $$ ψ -weak dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 301-327, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:79:y:2016:i:8:d:10.1007_s00184-016-0582-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.