IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v79y2016i7d10.1007_s00184-016-0579-7.html
   My bibliography  Save this article

On the skewness of order statistics in multiple-outlier PHR models

Author

Listed:
  • Ebrahim Amini-Seresht

    (Bu-Ali Sina University)

  • Jianfei Qiao

    (Lanzhou University)

  • Yiying Zhang

    (The University of Hong Kong)

  • Peng Zhao

    (Jiangsu Normal University)

Abstract

In this paper, we investigate the skewness of order statistics stemming from multiple-outlier proportional hazard rates samples in the sense of several variability orderings such as the star order, Lorenz order and dispersive order. It is shown that the more heterogeneity among the multiple-outlier components will lead to a more skewed lifetime of a k-out-of-n system consisting of these components. The results established here generalize the corresponding ones in Kochar and Xu (J Appl Probab 48:271–284, 2011, Ann Oper Res 212:127–138, 2014). Some numerical examples are also provided to illustrate the theoretical results.

Suggested Citation

  • Ebrahim Amini-Seresht & Jianfei Qiao & Yiying Zhang & Peng Zhao, 2016. "On the skewness of order statistics in multiple-outlier PHR models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(7), pages 817-836, October.
  • Handle: RePEc:spr:metrik:v:79:y:2016:i:7:d:10.1007_s00184-016-0579-7
    DOI: 10.1007/s00184-016-0579-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-016-0579-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-016-0579-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balakrishnan, N. & Zhao, Peng, 2013. "Hazard rate comparison of parallel systems with heterogeneous gamma components," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 153-160.
    2. Lillo, Rosa E. & Nanda, Asok K. & Shaked, Moshe, 2001. "Preservation of some likelihood ratio stochastic orders by order statistics," Statistics & Probability Letters, Elsevier, vol. 51(2), pages 111-119, January.
    3. Subhash Kochar & Maochao Xu, 2014. "On the skewness of order statistics with applications," Annals of Operations Research, Springer, vol. 212(1), pages 127-138, January.
    4. Da, Gaofeng & Xu, Maochao & Balakrishnan, N., 2014. "On the Lorenz ordering of order statistics from exponential populations and some applications," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 88-97.
    5. Kochar, Subhash C., 1996. "Dispersive ordering of order statistics," Statistics & Probability Letters, Elsevier, vol. 27(3), pages 271-274, April.
    6. Torrado, Nuria & Lillo, Rosa E., 2013. "Likelihood ratio order of spacings from two heterogeneous samples," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 338-348.
    7. Proschan, F. & Sethuraman, J., 1976. "Stochastic comparisons of order statistics from heterogeneous populations, with applications in reliability," Journal of Multivariate Analysis, Elsevier, vol. 6(4), pages 608-616, December.
    8. Zhao, Peng & Li, Xiaohu & Balakrishnan, N., 2009. "Likelihood ratio order of the second order statistic from independent heterogeneous exponential random variables," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 952-962, May.
    9. Zhao, Peng & Zhang, Yiying, 2012. "On sample ranges in multiple-outlier models," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 335-349.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Mesfioui & M. Kayid & S. Izadkhah, 2017. "Stochastic comparisons of order statistics from heterogeneous random variables with Archimedean copula," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 749-766, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Peng & Balakrishnan, N., 2014. "A stochastic inequality for the largest order statistics from heterogeneous gamma variables," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 145-150.
    2. Peng Zhao & N. Balakrishnan, 2015. "Comparisons of Largest Order Statistics from Multiple-outlier Gamma Models," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 617-645, September.
    3. Hazra, Nil Kamal & Kuiti, Mithu Rani & Finkelstein, Maxim & Nanda, Asok K., 2017. "On stochastic comparisons of maximum order statistics from the location-scale family of distributions," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 31-41.
    4. Ding, Weiyong & Da, Gaofeng & Zhao, Peng, 2013. "On sample ranges from two sets of heterogenous random variables," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 63-73.
    5. Zhao, Peng & Li, Xiaohu & Balakrishnan, N., 2009. "Likelihood ratio order of the second order statistic from independent heterogeneous exponential random variables," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 952-962, May.
    6. Li, Chen & Li, Xiaohu, 2015. "Likelihood ratio order of sample minimum from heterogeneous Weibull random variables," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 46-53.
    7. Peng Zhao & N. Balakrishnan, 2011. "Dispersive ordering of fail-safe systems with heterogeneous exponential components," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 203-210, September.
    8. Peng Zhao & Yiying Zhang, 2014. "On the maxima of heterogeneous gamma variables with different shape and scale parameters," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(6), pages 811-836, August.
    9. Peng Zhao & Feng Su, 2014. "On maximum order statistics from heterogeneous geometric variables," Annals of Operations Research, Springer, vol. 212(1), pages 215-223, January.
    10. Wang, Jiantian, 2015. "A stochastic comparison result about hazard rate ordering of two parallel systems comprising of geometric components," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 86-90.
    11. Balakrishnan, N. & Zhao, Peng, 2013. "Hazard rate comparison of parallel systems with heterogeneous gamma components," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 153-160.
    12. Ding, Weiyong & Zhang, Yiying & Zhao, Peng, 2013. "Comparisons of k-out-of-n systems with heterogenous components," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 493-502.
    13. Jongwoo Jeon & Subhash Kochar & Chul Park, 2006. "Dispersive ordering—Some applications and examples," Statistical Papers, Springer, vol. 47(2), pages 227-247, March.
    14. Zhao, Peng & Balakrishnan, N., 2011. "New results on comparisons of parallel systems with heterogeneous gamma components," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 36-44, January.
    15. Kleiber, Christian, 2002. "Variability ordering of heavy-tailed distributions with applications to order statistics," Statistics & Probability Letters, Elsevier, vol. 58(4), pages 381-388, July.
    16. Nil Kamal Hazra & Mithu Rani Kuiti & Maxim Finkelstein & Asok K. Nanda, 2018. "On stochastic comparisons of minimum order statistics from the location–scale family of distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(2), pages 105-123, February.
    17. Lihong, Sun & Xinsheng, Zhang, 2005. "Stochastic comparisons of order statistics from gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 112-121, March.
    18. Fang, Longxiang & Zhang, Xinsheng, 2013. "Stochastic comparisons of series systems with heterogeneous Weibull components," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1649-1653.
    19. Antonia Castaño-Martínez & Gema Pigueiras & Miguel A. Sordo, 2021. "On the Increasing Convex Order of Relative Spacings of Order Statistics," Mathematics, MDPI, vol. 9(6), pages 1-12, March.
    20. Fernández-Ponce, J.M. & Pellerey, F. & Rodríguez-Griñolo, M.R., 2011. "A characterization of the multivariate excess wealth ordering," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 410-417.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:79:y:2016:i:7:d:10.1007_s00184-016-0579-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.