IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v212y2014i1p215-22310.1007-s10479-012-1158-6.html
   My bibliography  Save this article

On maximum order statistics from heterogeneous geometric variables

Author

Listed:
  • Peng Zhao
  • Feng Su

Abstract

Let X 1 ,X 2 be independent geometric random variables with parameters p 1 ,p 2 , respectively, and Y 1 ,Y 2 be i.i.d. geometric random variables with common parameter p. It is shown that X 2:2 , the maximum order statistic from X 1 ,X 2 , is larger than Y 2:2 , the second order statistic from Y 1 ,Y 2 , in terms of the hazard rate order [usual stochastic order] if and only if $p\geq \tilde{p}$ , where $\tilde{p}=(p_{1}p_{2})^{\frac{1}{2}}$ is the geometric mean of (p 1 ,p 2 ). This result answers an open problem proposed recently by Mao and Hu (Probab. Eng. Inf. Sci. 24:245–262, 2010) for the case when n=2. Copyright Springer Science+Business Media, LLC 2014

Suggested Citation

  • Peng Zhao & Feng Su, 2014. "On maximum order statistics from heterogeneous geometric variables," Annals of Operations Research, Springer, vol. 212(1), pages 215-223, January.
  • Handle: RePEc:spr:annopr:v:212:y:2014:i:1:p:215-223:10.1007/s10479-012-1158-6
    DOI: 10.1007/s10479-012-1158-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1158-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1158-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Proschan, F. & Sethuraman, J., 1976. "Stochastic comparisons of order statistics from heterogeneous populations, with applications in reliability," Journal of Multivariate Analysis, Elsevier, vol. 6(4), pages 608-616, December.
    2. Jeske, Daniel R. & Blessinger, Todd, 2004. "Tunable Approximations for the Mean and Variance of the Maximum of Heterogeneous Geometrically Distributed Random Variables," The American Statistician, American Statistical Association, vol. 58, pages 322-327, November.
    3. Zhao, Peng & Li, Xiaohu & Balakrishnan, N., 2009. "Likelihood ratio order of the second order statistic from independent heterogeneous exponential random variables," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 952-962, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Zhao & N. Balakrishnan, 2011. "Dispersive ordering of fail-safe systems with heterogeneous exponential components," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 203-210, September.
    2. Peng Zhao & Yiying Zhang, 2014. "On the maxima of heterogeneous gamma variables with different shape and scale parameters," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(6), pages 811-836, August.
    3. Balakrishnan, N. & Zhao, Peng, 2013. "Hazard rate comparison of parallel systems with heterogeneous gamma components," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 153-160.
    4. Ebrahim Amini-Seresht & Jianfei Qiao & Yiying Zhang & Peng Zhao, 2016. "On the skewness of order statistics in multiple-outlier PHR models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(7), pages 817-836, October.
    5. Ding, Weiyong & Zhang, Yiying & Zhao, Peng, 2013. "Comparisons of k-out-of-n systems with heterogenous components," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 493-502.
    6. Zhao, Peng & Balakrishnan, N., 2011. "New results on comparisons of parallel systems with heterogeneous gamma components," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 36-44, January.
    7. Zhao, Peng & Balakrishnan, N., 2014. "A stochastic inequality for the largest order statistics from heterogeneous gamma variables," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 145-150.
    8. Nil Kamal Hazra & Mithu Rani Kuiti & Maxim Finkelstein & Asok K. Nanda, 2018. "On stochastic comparisons of minimum order statistics from the location–scale family of distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(2), pages 105-123, February.
    9. Peng Zhao & N. Balakrishnan, 2015. "Comparisons of Largest Order Statistics from Multiple-outlier Gamma Models," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 617-645, September.
    10. Hazra, Nil Kamal & Kuiti, Mithu Rani & Finkelstein, Maxim & Nanda, Asok K., 2017. "On stochastic comparisons of maximum order statistics from the location-scale family of distributions," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 31-41.
    11. Ding, Weiyong & Da, Gaofeng & Zhao, Peng, 2013. "On sample ranges from two sets of heterogenous random variables," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 63-73.
    12. Eisenberg, Bennett, 2008. "On the expectation of the maximum of IID geometric random variables," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 135-143, February.
    13. Zhao, Peng & Li, Xiaohu & Balakrishnan, N., 2009. "Likelihood ratio order of the second order statistic from independent heterogeneous exponential random variables," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 952-962, May.
    14. Lihong, Sun & Xinsheng, Zhang, 2005. "Stochastic comparisons of order statistics from gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 112-121, March.
    15. Li, Chen & Li, Xiaohu, 2015. "Likelihood ratio order of sample minimum from heterogeneous Weibull random variables," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 46-53.
    16. Sangita Das & Suchandan Kayal, 2020. "Ordering extremes of exponentiated location-scale models with dependent and heterogeneous random samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(8), pages 869-893, November.
    17. Zhao, Peng & Balakrishnan, N., 2009. "Likelihood ratio ordering of convolutions of heterogeneous exponential and geometric random variables," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1717-1723, August.
    18. Paltanea, Eugen, 2011. "Bounds for mixtures of order statistics from exponentials and applications," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 896-907, May.
    19. Wang, Jiantian, 2015. "A stochastic comparison result about hazard rate ordering of two parallel systems comprising of geometric components," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 86-90.
    20. Zhao, Peng, 2011. "Some new results on convolutions of heterogeneous gamma random variables," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 958-976, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:212:y:2014:i:1:p:215-223:10.1007/s10479-012-1158-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.