IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v17y2015i3d10.1007_s11009-013-9377-0.html
   My bibliography  Save this article

Comparisons of Largest Order Statistics from Multiple-outlier Gamma Models

Author

Listed:
  • Peng Zhao

    (Jiangsu Normal University)

  • N. Balakrishnan

    (McMaster University
    King Abdulaziz University)

Abstract

In this paper, we discuss stochastic comparisons of largest order statistics from multiple-outlier gamma models in terms of different stochastic orderings including the likelihood ratio order, hazard rate order, star order and dispersive order. It is proved, among others, that the weak majorization order between the two scale parameter vectors implies the likelihood ratio order between the largest order statistics, and that the p-larger order between the two scale parameter vectors implies the hazard rate order between the largest order statistics. We also present a general sufficient condition for the star order. The results established here strengthen and generalize some of the results known in the literature. Some numerical examples are also presented to illustrate the established results.

Suggested Citation

  • Peng Zhao & N. Balakrishnan, 2015. "Comparisons of Largest Order Statistics from Multiple-outlier Gamma Models," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 617-645, September.
  • Handle: RePEc:spr:metcap:v:17:y:2015:i:3:d:10.1007_s11009-013-9377-0
    DOI: 10.1007/s11009-013-9377-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-013-9377-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-013-9377-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huaihou Chen & Taizhong Hu, 2008. "Multivariate likelihood ratio orderings between spacings of heterogeneous exponential random variables," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(1), pages 17-29, June.
    2. Balakrishnan, N. & Zhao, Peng, 2013. "Hazard rate comparison of parallel systems with heterogeneous gamma components," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 153-160.
    3. Proschan, F. & Sethuraman, J., 1976. "Stochastic comparisons of order statistics from heterogeneous populations, with applications in reliability," Journal of Multivariate Analysis, Elsevier, vol. 6(4), pages 608-616, December.
    4. Misra, Neeraj & Misra, Amit Kumar, 2013. "On comparison of reversed hazard rates of two parallel systems comprising of independent gamma components," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1567-1570.
    5. Zhao, Peng & Li, Xiaohu & Balakrishnan, N., 2009. "Likelihood ratio order of the second order statistic from independent heterogeneous exponential random variables," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 952-962, May.
    6. Boland, Philip J. & El-Neweihi, Emad & Proschan, Frank, 1994. "Schur properties of convolutions of exponential and geometric random variables," Journal of Multivariate Analysis, Elsevier, vol. 48(1), pages 157-167, January.
    7. Kochar, Subhash & Rojo, Javier, 1996. "Some New Results on Stochastic Comparisons of Spacings from Heterogeneous Exponential Distributions," Journal of Multivariate Analysis, Elsevier, vol. 59(2), pages 272-281, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Peng & Balakrishnan, N., 2014. "A stochastic inequality for the largest order statistics from heterogeneous gamma variables," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 145-150.
    2. Balakrishnan, N. & Zhao, Peng, 2013. "Hazard rate comparison of parallel systems with heterogeneous gamma components," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 153-160.
    3. Ding, Weiyong & Zhang, Yiying & Zhao, Peng, 2013. "Comparisons of k-out-of-n systems with heterogenous components," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 493-502.
    4. Zhao, Peng & Li, Xiaohu & Balakrishnan, N., 2009. "Likelihood ratio order of the second order statistic from independent heterogeneous exponential random variables," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 952-962, May.
    5. Lihong, Sun & Xinsheng, Zhang, 2005. "Stochastic comparisons of order statistics from gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 112-121, March.
    6. Peng Zhao & N. Balakrishnan, 2011. "Dispersive ordering of fail-safe systems with heterogeneous exponential components," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 203-210, September.
    7. Peng Zhao & Yiying Zhang, 2014. "On the maxima of heterogeneous gamma variables with different shape and scale parameters," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(6), pages 811-836, August.
    8. Ebrahim Amini-Seresht & Jianfei Qiao & Yiying Zhang & Peng Zhao, 2016. "On the skewness of order statistics in multiple-outlier PHR models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(7), pages 817-836, October.
    9. Jongwoo Jeon & Subhash Kochar & Chul Park, 2006. "Dispersive ordering—Some applications and examples," Statistical Papers, Springer, vol. 47(2), pages 227-247, March.
    10. Zhao, Peng & Balakrishnan, N., 2011. "New results on comparisons of parallel systems with heterogeneous gamma components," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 36-44, January.
    11. Hazra, Nil Kamal & Kuiti, Mithu Rani & Finkelstein, Maxim & Nanda, Asok K., 2017. "On stochastic comparisons of maximum order statistics from the location-scale family of distributions," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 31-41.
    12. Ding, Weiyong & Da, Gaofeng & Zhao, Peng, 2013. "On sample ranges from two sets of heterogenous random variables," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 63-73.
    13. Li, Chen & Li, Xiaohu, 2015. "Likelihood ratio order of sample minimum from heterogeneous Weibull random variables," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 46-53.
    14. Zhao, Peng & Balakrishnan, N., 2009. "Likelihood ratio ordering of convolutions of heterogeneous exponential and geometric random variables," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1717-1723, August.
    15. Peng Zhao & Feng Su, 2014. "On maximum order statistics from heterogeneous geometric variables," Annals of Operations Research, Springer, vol. 212(1), pages 215-223, January.
    16. Paltanea, Eugen, 2011. "Bounds for mixtures of order statistics from exponentials and applications," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 896-907, May.
    17. Zhao, Peng, 2011. "Some new results on convolutions of heterogeneous gamma random variables," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 958-976, May.
    18. Wang, Jiantian & Cheng, Bin, 2017. "Answer to an open problem on mean residual life ordering of parallel systems under multiple-outlier exponential models," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 80-84.
    19. Zhao, Peng & Balakrishnan, N., 2009. "Mean residual life order of convolutions of heterogeneous exponential random variables," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1792-1801, September.
    20. Bhattacharyya, Dhrubasish & Khan, Ruhul Ali & Mitra, Murari, 2020. "Stochastic comparisons of series, parallel and k-out-of-n systems with heterogeneous bathtub failure rate type components," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:17:y:2015:i:3:d:10.1007_s11009-013-9377-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.